Percentile Study of χ Distribution. Application to Response Time Data

As a continuation of our previous work, where a Maxwell–Boltzmann distribution was found to model a collective’s reaction times, in this work we will carry out a percentile study of the χ distribution for some freedom ranging from <i>k</i> = 2 to <i>k</i> = 10. The most commo...

Full description

Bibliographic Details
Main Authors: Juan Carlos Castro-Palacio, Pedro Fernández-de-Córdoba, J. M. Isidro, Esperanza Navarro-Pardo, Romeo Selvas Aguilar
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/4/514
_version_ 1797571571401883648
author Juan Carlos Castro-Palacio
Pedro Fernández-de-Córdoba
J. M. Isidro
Esperanza Navarro-Pardo
Romeo Selvas Aguilar
author_facet Juan Carlos Castro-Palacio
Pedro Fernández-de-Córdoba
J. M. Isidro
Esperanza Navarro-Pardo
Romeo Selvas Aguilar
author_sort Juan Carlos Castro-Palacio
collection DOAJ
description As a continuation of our previous work, where a Maxwell–Boltzmann distribution was found to model a collective’s reaction times, in this work we will carry out a percentile study of the χ distribution for some freedom ranging from <i>k</i> = 2 to <i>k</i> = 10. The most commonly used percentiles in the biomedical and behavioral sciences have been included in the analysis. We seek to provide a look-up table with percentile ratios, taken symmetrically about the median, such that this distribution can be identified in practice in an easy way. We have proven that these ratios do not depend upon the variance chosen for the <i>k</i> generating Gaussians. In general, the χ probability density, generalized to take any value of the variance, represents an ideal gas in a <i>k</i>-dimensional space. We also derive an approximate expression for the median of the generalized χ distribution. In the second part of the results, we will focus on the practical case of <i>k</i> = 3, which represents the ideal gas in physics, and models quite well the reaction times of a human collective. Accurately, we will perform a more detailed scrutiny of the percentiles for the reaction time distribution of a sample of 50 school-aged children (7200 reaction times).
first_indexed 2024-03-10T20:42:35Z
format Article
id doaj.art-13ed4341659a4b2fa75948f5122e3685
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T20:42:35Z
publishDate 2020-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-13ed4341659a4b2fa75948f5122e36852023-11-19T20:32:57ZengMDPI AGMathematics2227-73902020-04-018451410.3390/math8040514Percentile Study of χ Distribution. Application to Response Time DataJuan Carlos Castro-Palacio0Pedro Fernández-de-Córdoba1J. M. Isidro2Esperanza Navarro-Pardo3Romeo Selvas Aguilar4Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 Valencia, SpainGrupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 Valencia, SpainGrupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 Valencia, SpainGrupo de Modelización Interdisciplinar, InterTech, Departamento de Psicología Evolutiva y de la Educación, Universitat de València, E-46010 Valencia, SpainFacultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, MexicoAs a continuation of our previous work, where a Maxwell–Boltzmann distribution was found to model a collective’s reaction times, in this work we will carry out a percentile study of the χ distribution for some freedom ranging from <i>k</i> = 2 to <i>k</i> = 10. The most commonly used percentiles in the biomedical and behavioral sciences have been included in the analysis. We seek to provide a look-up table with percentile ratios, taken symmetrically about the median, such that this distribution can be identified in practice in an easy way. We have proven that these ratios do not depend upon the variance chosen for the <i>k</i> generating Gaussians. In general, the χ probability density, generalized to take any value of the variance, represents an ideal gas in a <i>k</i>-dimensional space. We also derive an approximate expression for the median of the generalized χ distribution. In the second part of the results, we will focus on the practical case of <i>k</i> = 3, which represents the ideal gas in physics, and models quite well the reaction times of a human collective. Accurately, we will perform a more detailed scrutiny of the percentiles for the reaction time distribution of a sample of 50 school-aged children (7200 reaction times).https://www.mdpi.com/2227-7390/8/4/514χ distributionideal gas modelMaxwell–Boltzmann distributionresponse times
spellingShingle Juan Carlos Castro-Palacio
Pedro Fernández-de-Córdoba
J. M. Isidro
Esperanza Navarro-Pardo
Romeo Selvas Aguilar
Percentile Study of χ Distribution. Application to Response Time Data
Mathematics
χ distribution
ideal gas model
Maxwell–Boltzmann distribution
response times
title Percentile Study of χ Distribution. Application to Response Time Data
title_full Percentile Study of χ Distribution. Application to Response Time Data
title_fullStr Percentile Study of χ Distribution. Application to Response Time Data
title_full_unstemmed Percentile Study of χ Distribution. Application to Response Time Data
title_short Percentile Study of χ Distribution. Application to Response Time Data
title_sort percentile study of χ distribution application to response time data
topic χ distribution
ideal gas model
Maxwell–Boltzmann distribution
response times
url https://www.mdpi.com/2227-7390/8/4/514
work_keys_str_mv AT juancarloscastropalacio percentilestudyofchdistributionapplicationtoresponsetimedata
AT pedrofernandezdecordoba percentilestudyofchdistributionapplicationtoresponsetimedata
AT jmisidro percentilestudyofchdistributionapplicationtoresponsetimedata
AT esperanzanavarropardo percentilestudyofchdistributionapplicationtoresponsetimedata
AT romeoselvasaguilar percentilestudyofchdistributionapplicationtoresponsetimedata