In Silico Analysis of Huntingtin Homologs in Lower Eukaryotes

Huntington’s disease is a rare neurodegenerative and autosomal dominant disorder. HD is caused by a mutation in the gene coding for huntingtin (Htt). The result is the production of a mutant Htt with an abnormally long polyglutamine repeat that leads to pathological Htt aggregates. Although the stru...

Full description

Bibliographic Details
Main Authors: Valentina Brandi, Fabio Polticelli
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/6/3214
Description
Summary:Huntington’s disease is a rare neurodegenerative and autosomal dominant disorder. HD is caused by a mutation in the gene coding for huntingtin (Htt). The result is the production of a mutant Htt with an abnormally long polyglutamine repeat that leads to pathological Htt aggregates. Although the structure of human Htt has been determined, albeit at low resolution, its functions and how they are performed are largely unknown. Moreover, there is little information on the structure and function of Htt in other organisms. The comparison of Htt homologs can help to understand if there is a functional conservation of domains in the evolution of Htt in eukaryotes. In this work, through a computational approach, Htt homologs from lower eukaryotes have been analysed, identifying ordered domains and modelling their structure. Based on the structural models, a putative function for most of the domains has been predicted. A putative <i>C. elegans</i> Htt-like protein has also been analysed following the same approach. The results obtained support the notion that this protein is a orthologue of human Htt.
ISSN:1661-6596
1422-0067