Bessel Beams in Ophthalmology: A Review

The achievable resolution of a conventional imaging system is inevitably limited due to diffraction. Dealing with precise imaging in scattering media, such as in the case of biomedical imaging, is even more difficult owing to the weak signal-to-noise ratios. Recent developments in non-diffractive be...

Full description

Bibliographic Details
Main Authors: C. S. Suchand Sandeep, Ahmad Khairyanto, Tin Aung, Murukeshan Vadakke Matham
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/14/9/1672
Description
Summary:The achievable resolution of a conventional imaging system is inevitably limited due to diffraction. Dealing with precise imaging in scattering media, such as in the case of biomedical imaging, is even more difficult owing to the weak signal-to-noise ratios. Recent developments in non-diffractive beams such as Bessel beams, Airy beams, vortex beams, and Mathieu beams have paved the way to tackle some of these challenges. This review specifically focuses on non-diffractive Bessel beams for ophthalmological applications. The theoretical foundation of the non-diffractive Bessel beam is discussed first followed by a review of various ophthalmological applications utilizing Bessel beams. The advantages and disadvantages of these techniques in comparison to those of existing state-of-the-art ophthalmological systems are discussed. The review concludes with an overview of the current developments and the future perspectives of non-diffractive beams in ophthalmology.
ISSN:2072-666X