Summary: | Aiming at effectively improving photovoltaic (PV) park operation and the stability of the electricity grid, the current paper addresses the design and development of a novel system achieving the short-term irradiance forecasting for the PV park area, which is the key factor for controlling the variations in the PV power production. First, it introduces the Xception long short-term memory (XceptionLSTM) cell tailored for recurrent neural networks (RNN). Second, it presents the novel irradiance forecasting model that consists of a sequence-to-sequence image regression NNs in the form of a spatio-temporal encoder–decoder including Xception layers in the spatial encoder, the novel XceptionLSTM in the temporal encoder and decoder and a multilayer perceptron in the spatial decoder. The proposed model achieves a forecast skill of 16.57% for a horizon of 5 min when compared to the persistence model. Moreover, the proposed model is designed for execution on edge computing devices and the real-time application of the inference on the Raspberry Pi 4 Model B 8 GB and the Raspberry Pi Zero 2W validates the results.
|