Relaxed modified Newton-based iteration method for generalized absolute value equations

Many problems in different fields may lead to solutions of absolute value equations, such as linear programming problems, linear complementarity problems, quadratic programming, mixed integer programming, the bimatrix game and so on. In this paper, by introducing a nonnegative real parameter to the...

Full description

Bibliographic Details
Main Authors: Xin-Hui Shao, Wan-Chen Zhao
Format: Article
Language:English
Published: AIMS Press 2023-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023233?viewType=HTML
Description
Summary:Many problems in different fields may lead to solutions of absolute value equations, such as linear programming problems, linear complementarity problems, quadratic programming, mixed integer programming, the bimatrix game and so on. In this paper, by introducing a nonnegative real parameter to the modified Newton-based iteration scheme, we present a new relaxed modified Newton-based (RMN) iteration method for solving generalized absolute value equations. The famous Picard iteration method and the modified Newton-type iteration method are the exceptional cases of the RMN iteration method. The convergence property of the new method is discussed. Finally, the validity and feasibility of the RMN iteration method are verified by experimental examples.
ISSN:2473-6988