Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

Concrete has the potential to become a solution for thermal energy storage (TES) integrated in concentrating solar power (CSP) systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20) is tested at high temperatures up to 600 °C....

Full description

Bibliographic Details
Main Authors: Chao Wu, Jianwen Pan, Wen Zhong, Feng Jin
Format: Article
Language:English
Published: MDPI AG 2016-09-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/6/10/271
Description
Summary:Concrete has the potential to become a solution for thermal energy storage (TES) integrated in concentrating solar power (CSP) systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20) is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature), 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.
ISSN:2076-3417