Binary Addition in Resistance Switching Memory Array by Sensing Majority

The flow of data between processing and memory units in contemporary computing systems is their main performance and energy-efficiency bottleneck, often referred to as the ‘von Neumann bottleneck’ or ‘memory wall’. Emerging resistance switching memories (memristors) show promising signs to overcome...

Full description

Bibliographic Details
Main Author: John Reuben
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/5/496
_version_ 1797567940057366528
author John Reuben
author_facet John Reuben
author_sort John Reuben
collection DOAJ
description The flow of data between processing and memory units in contemporary computing systems is their main performance and energy-efficiency bottleneck, often referred to as the ‘von Neumann bottleneck’ or ‘memory wall’. Emerging resistance switching memories (memristors) show promising signs to overcome the ‘memory wall’ by enabling computation in the memory array. Majority logic is a type of Boolean logic, and in many nanotechnologies, it has been found to be an efficient logic primitive. In this paper, a technique is proposed to implement a majority gate in a memory array. The majority gate is realised in an energy-efficient manner as a memory <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>E</mi> <mi>A</mi> <mi>D</mi> </mrow> </semantics> </math> </inline-formula> operation. The proposed logic family disintegrates arithmetic operations to majority and NOT operations which are implemented as memory <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>E</mi> <mi>A</mi> <mi>D</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mi>R</mi> <mi>I</mi> <mi>T</mi> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> operations. A 1-bit full adder can be implemented in 6 steps (memory cycles) in a 1T–1R array, which is faster than <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mi>M</mi> <mi>P</mi> <mi>L</mi> <mi>Y</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>A</mi> <mi>N</mi> <mi>D</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>O</mi> <mi>R</mi> </mrow> </semantics> </math> </inline-formula> and other similar logic primitives.
first_indexed 2024-03-10T19:49:16Z
format Article
id doaj.art-1419cf065b1f4b0faf20a355f5ae4614
institution Directory Open Access Journal
issn 2072-666X
language English
last_indexed 2024-03-10T19:49:16Z
publishDate 2020-05-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj.art-1419cf065b1f4b0faf20a355f5ae46142023-11-20T00:30:59ZengMDPI AGMicromachines2072-666X2020-05-0111549610.3390/mi11050496Binary Addition in Resistance Switching Memory Array by Sensing MajorityJohn Reuben0Chair of Computer Science 3—Computer Architecture, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, GermanyThe flow of data between processing and memory units in contemporary computing systems is their main performance and energy-efficiency bottleneck, often referred to as the ‘von Neumann bottleneck’ or ‘memory wall’. Emerging resistance switching memories (memristors) show promising signs to overcome the ‘memory wall’ by enabling computation in the memory array. Majority logic is a type of Boolean logic, and in many nanotechnologies, it has been found to be an efficient logic primitive. In this paper, a technique is proposed to implement a majority gate in a memory array. The majority gate is realised in an energy-efficient manner as a memory <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>E</mi> <mi>A</mi> <mi>D</mi> </mrow> </semantics> </math> </inline-formula> operation. The proposed logic family disintegrates arithmetic operations to majority and NOT operations which are implemented as memory <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>E</mi> <mi>A</mi> <mi>D</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mi>R</mi> <mi>I</mi> <mi>T</mi> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> operations. A 1-bit full adder can be implemented in 6 steps (memory cycles) in a 1T–1R array, which is faster than <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mi>M</mi> <mi>P</mi> <mi>L</mi> <mi>Y</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>A</mi> <mi>N</mi> <mi>D</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>O</mi> <mi>R</mi> </mrow> </semantics> </math> </inline-formula> and other similar logic primitives.https://www.mdpi.com/2072-666X/11/5/496memristorresistance switching memorynon-volatile memory (NVM)in-memory computingmajority logicadder
spellingShingle John Reuben
Binary Addition in Resistance Switching Memory Array by Sensing Majority
Micromachines
memristor
resistance switching memory
non-volatile memory (NVM)
in-memory computing
majority logic
adder
title Binary Addition in Resistance Switching Memory Array by Sensing Majority
title_full Binary Addition in Resistance Switching Memory Array by Sensing Majority
title_fullStr Binary Addition in Resistance Switching Memory Array by Sensing Majority
title_full_unstemmed Binary Addition in Resistance Switching Memory Array by Sensing Majority
title_short Binary Addition in Resistance Switching Memory Array by Sensing Majority
title_sort binary addition in resistance switching memory array by sensing majority
topic memristor
resistance switching memory
non-volatile memory (NVM)
in-memory computing
majority logic
adder
url https://www.mdpi.com/2072-666X/11/5/496
work_keys_str_mv AT johnreuben binaryadditioninresistanceswitchingmemoryarraybysensingmajority