Increasing the ν = 5/2 gap energy: an analysis of MBE growth parameters

The fractional quantized Hall state at the filling factor ν  = 5/2 is of special interest due to its possible application for quantum computing. Here we report on the optimization of growth parameters that allowed us to produce two-dimensional electron gases (2DEGs) with a 5/2 gap energy up to 135 m...

Full description

Bibliographic Details
Main Authors: C Reichl, J Chen, S Baer, C Rössler, T Ihn, K Ensslin, W Dietsche, W Wegscheider
Format: Article
Language:English
Published: IOP Publishing 2014-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/16/2/023014
_version_ 1797751486347739136
author C Reichl
J Chen
S Baer
C Rössler
T Ihn
K Ensslin
W Dietsche
W Wegscheider
author_facet C Reichl
J Chen
S Baer
C Rössler
T Ihn
K Ensslin
W Dietsche
W Wegscheider
author_sort C Reichl
collection DOAJ
description The fractional quantized Hall state at the filling factor ν  = 5/2 is of special interest due to its possible application for quantum computing. Here we report on the optimization of growth parameters that allowed us to produce two-dimensional electron gases (2DEGs) with a 5/2 gap energy up to 135 mK. We concentrated on optimizing the molecular beam epitaxy (MBE) growth to provide high 5/2 gap energies in ‘as-grown’ samples, without the need to enhance the 2DEGs properties by illumination or gating techniques. Our findings allow us to analyse the impact of doping in narrow quantum wells with respect to conventional DX-doping in Al _x Ga _1 _− _x As. The impact of the setback distance between doping layer and 2DEG was investigated as well. Additionally, we found a considerable increase in gap energy by reducing the amount of background impurities. To this end growth techniques like temperature reductions for substrate and effusion cells and the reduction of the Al mole fraction in the 2DEG region were applied.
first_indexed 2024-03-12T16:49:15Z
format Article
id doaj.art-141c5773f932466ca1f0eeddbc88b772
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:49:15Z
publishDate 2014-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-141c5773f932466ca1f0eeddbc88b7722023-08-08T11:23:43ZengIOP PublishingNew Journal of Physics1367-26302014-01-0116202301410.1088/1367-2630/16/2/023014Increasing the ν = 5/2 gap energy: an analysis of MBE growth parametersC Reichl0J Chen1S Baer2C Rössler3T Ihn4K Ensslin5W Dietsche6W Wegscheider7Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, SwitzerlandMax-Planck-Institute for Solid State Research , D-70569 Stuttgart, GermanySolid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, SwitzerlandSolid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, SwitzerlandSolid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, SwitzerlandSolid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, SwitzerlandSolid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland; Max-Planck-Institute for Solid State Research , D-70569 Stuttgart, GermanySolid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, SwitzerlandThe fractional quantized Hall state at the filling factor ν  = 5/2 is of special interest due to its possible application for quantum computing. Here we report on the optimization of growth parameters that allowed us to produce two-dimensional electron gases (2DEGs) with a 5/2 gap energy up to 135 mK. We concentrated on optimizing the molecular beam epitaxy (MBE) growth to provide high 5/2 gap energies in ‘as-grown’ samples, without the need to enhance the 2DEGs properties by illumination or gating techniques. Our findings allow us to analyse the impact of doping in narrow quantum wells with respect to conventional DX-doping in Al _x Ga _1 _− _x As. The impact of the setback distance between doping layer and 2DEG was investigated as well. Additionally, we found a considerable increase in gap energy by reducing the amount of background impurities. To this end growth techniques like temperature reductions for substrate and effusion cells and the reduction of the Al mole fraction in the 2DEG region were applied.https://doi.org/10.1088/1367-2630/16/2/023014
spellingShingle C Reichl
J Chen
S Baer
C Rössler
T Ihn
K Ensslin
W Dietsche
W Wegscheider
Increasing the ν = 5/2 gap energy: an analysis of MBE growth parameters
New Journal of Physics
title Increasing the ν = 5/2 gap energy: an analysis of MBE growth parameters
title_full Increasing the ν = 5/2 gap energy: an analysis of MBE growth parameters
title_fullStr Increasing the ν = 5/2 gap energy: an analysis of MBE growth parameters
title_full_unstemmed Increasing the ν = 5/2 gap energy: an analysis of MBE growth parameters
title_short Increasing the ν = 5/2 gap energy: an analysis of MBE growth parameters
title_sort increasing the ν 5 2 gap energy an analysis of mbe growth parameters
url https://doi.org/10.1088/1367-2630/16/2/023014
work_keys_str_mv AT creichl increasingthen52gapenergyananalysisofmbegrowthparameters
AT jchen increasingthen52gapenergyananalysisofmbegrowthparameters
AT sbaer increasingthen52gapenergyananalysisofmbegrowthparameters
AT crossler increasingthen52gapenergyananalysisofmbegrowthparameters
AT tihn increasingthen52gapenergyananalysisofmbegrowthparameters
AT kensslin increasingthen52gapenergyananalysisofmbegrowthparameters
AT wdietsche increasingthen52gapenergyananalysisofmbegrowthparameters
AT wwegscheider increasingthen52gapenergyananalysisofmbegrowthparameters