Cuando la variabilidad varía: Heterocedasticidad y funciones de varianza
La variabilidad es una característica inherente al mundo que nos rodea. Cuantificarla es clave para comprender muchos de los procesos de interés para las ciencias ambientales y sociales como, por ejemplo, la adaptación de las especies al cambio climático o la desigualdad social. Para cuantificar la...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Asociación Argentina de Ecología
2020-10-01
|
Series: | Ecología Austral |
Subjects: | |
Online Access: | https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1131 |
Summary: | La variabilidad es una característica inherente al mundo que nos rodea. Cuantificarla es clave para comprender muchos de los procesos de interés para las ciencias ambientales y sociales como, por ejemplo, la adaptación de las especies al cambio climático o la desigualdad social. Para cuantificar la variabilidad se suele usar la varianza, uno de los parámetros de la distribución normal. Sin embargo, los modelos lineales clásicos asumen que la varianza es constante (supuesto de homocedasticidad) y se preocupan sólo por los cambios en las tendencias promedio. Es posible extender los modelos clásicos y relajar el supuesto de homocedasticidad mediante funciones de varianza, muy poco difundidas y abordadas por los textos en español. En esta ayuda didáctica nos proponemos introducir las funciones de varianza en modelos lineales desde un enfoque teóricoaplicado. Comenzamos introduciendo un problema real en el que se espera que la varianza no sea constante, y lo acompañamos con un ejemplo simulado. Posteriormente, planteamos el modelo lineal clásico y discutimos cómo se lo puede extender para modelar la heterocedasticidad. A continuación, explicamos algunas de las funciones de varianza y las aplicamos al caso real y a los datos simulados. Para ello hacemos uso de la función gls() del paquete nlme de R y proveemos el código para la reproducción del análisis. También exponemos otras opciones disponibles en R para tratar con datos heterocedásticos. Esperamos que este artículo brinde las bases para que profesionales y científicos con conocimientos estadísticos básicos comiencen a utilizar funciones de varianza y amplíen el conjunto de herramientas para analizar sus datos.
|
---|---|
ISSN: | 0327-5477 1667-782X |