The subword complexity of polynomial subsequences of the Thue–Morse sequence

Let $\mathbf{t}=(t(n))_{n\geqslant 0}$ be the Thue–Morse sequence in $0,1$. J.-P. Allouche and J. Shallit asked in 2003 whether the subword complexity of the subsequence $(t(n^2))_{n\geqslant 0}$ attains the maximal value. This problem was solved positively by Y. Moshe in 2007. Indeed Y. Moshe had s...

Full description

Bibliographic Details
Main Author: Shen, Zhao
Format: Article
Language:English
Published: Académie des sciences 2022-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.321/
Description
Summary:Let $\mathbf{t}=(t(n))_{n\geqslant 0}$ be the Thue–Morse sequence in $0,1$. J.-P. Allouche and J. Shallit asked in 2003 whether the subword complexity of the subsequence $(t(n^2))_{n\geqslant 0}$ attains the maximal value. This problem was solved positively by Y. Moshe in 2007. Indeed Y. Moshe had shown that for all $H\in \mathbb{Q}[T]$ with $H(\mathbb{N})\subseteq \mathbb{N}$ and $\deg H=2$, all the subsequences $(t(H(n)))_{n\geqslant 0}$ attain the maximal subword complexity. Then he asked whether the same result holds for $\deg H\geqslant 3$. In this work, we shall give a positive answer to the above problem.
ISSN:1778-3569