Accurate Real-Time Estimation of Power System Transients Using Constrained Symmetric Strong Tracking Square-Root Cubature Kalman Filter

The paper presents a fast and accurate algorithm for estimating four significant parameters (i.e., amplitude, frequency, phase angle, and damping factor) of a typical transient signal. The method can be connoted as the constrained symmetric strong tracking square-root cubature Kalman filter (CSSTSCK...

Full description

Bibliographic Details
Main Authors: Meghabriti Pramanik, Aurobinda Routray, Pabitra Mitra
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8890614/
Description
Summary:The paper presents a fast and accurate algorithm for estimating four significant parameters (i.e., amplitude, frequency, phase angle, and damping factor) of a typical transient signal. The method can be connoted as the constrained symmetric strong tracking square-root cubature Kalman filter (CSSTSCKF). The important aspects of the proposed algorithm are: 1) constraints are imposed on the state vectors by way of a logarithmic barrier function that is either ignored or handled heuristically; 2) symmetric sub-optimal multiple fading factors (FFs) are augmented into the predicted covariance matrix to capture sudden changes and to tune the gain matrix in real-time; moreover, symmetry of the covariance matrix is guaranteed by the influence of Cholesky triangular decomposition; 3) effect of noise can be adjusted by tuning the soften factor. Several case studies have been simulated to evaluate the proposed algorithm with respect to some of the well-known state-of-the-art methods. The real-time performance has been evaluated by flashing the filter codes into an ARM Cortex-M7 processor board and tracking the real-time signal from the experimental test bench. The results, presented herein, indicate that the CSSTSCKF remarkably outperforms all other considered techniques. Furthermore, the stability analysis of the nonlinear filter has been proved based on the constructor expression considering the boundedness of the estimation errors and other sub-items.
ISSN:2169-3536