Manipulating guided wave radiation with integrated geometric metasurface

Metasurfaces have manifested unprecedented capabilities in manipulating light by subwavelength unit cells, facilitating the miniaturization and multifunctions of optical systems. On the other hand, lithium niobate on insulator (LNOI) technology is revolutionizing the integrated photonics, enabling m...

Full description

Bibliographic Details
Main Authors: Fang Bin, Wang Zhizhang, Gao Shenglun, Zhu Shining, Li Tao
Format: Article
Language:English
Published: De Gruyter 2021-10-01
Series:Nanophotonics
Subjects:
Online Access:https://doi.org/10.1515/nanoph-2021-0466
Description
Summary:Metasurfaces have manifested unprecedented capabilities in manipulating light by subwavelength unit cells, facilitating the miniaturization and multifunctions of optical systems. On the other hand, lithium niobate on insulator (LNOI) technology is revolutionizing the integrated photonics, enabling multifunctional devices and applications. Yet the optical interface for coupling and manipulation is not sufficient and versatile. Here, we developed a geometric metasurface interface for LNOI waveguide and demonstrated several on-chip integrated devices for free space light field manipulations. By decorating waveguides with subwavelength optical antennas, we manipulated the guided waves into desired wavefronts in space, achieved complex free-space functions, such as focusing, multichannel vortex beam generation, and holography. Our architecture goes beyond the conventional gratings and enriches the functionalities of metasurface, which would open up a new perspective for future versatile guided-wave driven optical devices.
ISSN:2192-8614