Large-Scale Cluster Parallel Strategy for Regularized Lattice Boltzmann Method with Sub-Grid Scale Model in Large Eddy Simulation

As an improved method of the lattice Boltzmann method (LBM), the regularized lattice Boltzmann method (RLBM) has been widely used to simulate fluid flow. For solving high Reynolds number problems, large eddy simulation (LES) and RLBM can be combined. The computation of fluid flow problems often requ...

Full description

Bibliographic Details
Main Authors: Zhixiang Liu, Yuanji Chen, Wenjun Xiao, Wei Song, Yu Li
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/19/11078
Description
Summary:As an improved method of the lattice Boltzmann method (LBM), the regularized lattice Boltzmann method (RLBM) has been widely used to simulate fluid flow. For solving high Reynolds number problems, large eddy simulation (LES) and RLBM can be combined. The computation of fluid flow problems often requires a large number of computational grids and large-scale parallel clusters. Therefore, the high scalability parallel algorithm of RLBM with LES on a large-scale cluster has been proposed in this paper. The proposed parallel algorithm can solve complex flow problems with large-scale Cartesian grids and high Reynolds numbers. In order to achieve computational load balancing, the domain decomposition method (DDM) has been used in large-scale mesh generation. Three mesh generation strategies are adopted, namely 1D, 2D and 3D. Then, the buffer on the grid interface is introduced and the corresponding 1D, 2D and 3D parallel data exchange strategies are proposed. For the 3D lid-driven cavity flow and incompressible flow around a sphere under a high Reynolds number, the given parallel algorithm is analyzed in detail. Experimental results show that the proposed parallel algorithm has a high scalability and accuracy on hundreds of thousands of cores.
ISSN:2076-3417