Friction and Wear of Electroless Ni-P-CS Composite Coating

Carbon nanoparticles have excellent lubricating properties, however, they are less involved in metal protection. In this study, easily prepared candle soot was added to electroless nickel-phosphorus plating as a re-enforcement particle. Ball-disc friction and wear tests were conducted to evaluate th...

Full description

Bibliographic Details
Main Authors: Xiaoli Zhang, Heming Wang, Guiqun Liu
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/13/2/315
Description
Summary:Carbon nanoparticles have excellent lubricating properties, however, they are less involved in metal protection. In this study, easily prepared candle soot was added to electroless nickel-phosphorus plating as a re-enforcement particle. Ball-disc friction and wear tests were conducted to evaluate the wear-resistance capabilities of the electroless Ni-P coating and Ni-P-CS (Candle Soot) composite coatings. The parameters for the friction coefficient, wear amount, and friction morphology of the Ni-P-CS composite coatings were studied after being heat-treated (300 °C, 400 °C, 500 °C, and 600 °C). The surface morphology and phase composition of the Ni-P-CS composite coatings after thermal treatment at various temperatures were also investigated. The results are as follows: heat treatment strengthens the local hardness of the Ni-P-CS composite coating but does not further enhance wear resistance. Compared with the Ni-P coating and the heat-treated Ni-P-CS composite coating, the Ni-P-CS composite coatings without heat treatment have a lower friction coefficient (0.35) and better wear resistance.
ISSN:2075-4701