Electrostatic Tuning of Bilayer Graphene Edge Modes
We study the effect of a local potential shift induced by a side electrode on the edge modes at the boundary between gapped and ungapped bilayer graphene. A potential shift close to the gapped-ungapped boundary causes the emergence of unprotected edge modes, propagating in both directions along the...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-07-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/13/14/2102 |
Summary: | We study the effect of a local potential shift induced by a side electrode on the edge modes at the boundary between gapped and ungapped bilayer graphene. A potential shift close to the gapped-ungapped boundary causes the emergence of unprotected edge modes, propagating in both directions along the boundary. These counterpropagating edge modes allow edge backscattering, as opposed to the case of valley-momentum-locked edge modes. We then calculate the conductance of a bilayer graphene wire in presence of finger-gate electrodes, finding strong asymmetries with energy inversion and deviations from conductance quantization that can be understood with the gate-induced unprotected edge modes. |
---|---|
ISSN: | 2079-4991 |