ACM Bundles on Del Pezzo surfaces
ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface <em>X</em> of degree less or equal than six and for any<em> n ≥ 2</em> we con...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
2009-11-01
|
Series: | Le Matematiche |
Subjects: | |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/760 |
_version_ | 1831730207180980224 |
---|---|
author | Joan Pons-Llopis Fabio Tonini |
author_facet | Joan Pons-Llopis Fabio Tonini |
author_sort | Joan Pons-Llopis |
collection | DOAJ |
description | ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface <em>X</em> of degree less or equal than six and for any<em> n ≥ 2</em> we construct a family of dimension<em> ≥ n − 1</em> of non-isomorphic simple ACM bundles of rank n on <em>X</em>.<br /> |
first_indexed | 2024-12-21T09:42:15Z |
format | Article |
id | doaj.art-148fce90493b4869873a53226d8e4c45 |
institution | Directory Open Access Journal |
issn | 0373-3505 2037-5298 |
language | English |
last_indexed | 2024-12-21T09:42:15Z |
publishDate | 2009-11-01 |
publisher | Università degli Studi di Catania |
record_format | Article |
series | Le Matematiche |
spelling | doaj.art-148fce90493b4869873a53226d8e4c452022-12-21T19:08:26ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982009-11-01642177211726ACM Bundles on Del Pezzo surfacesJoan Pons-Llopis0Fabio Tonini1Universitat de BarcelonaScuola Normale SuperioreACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface <em>X</em> of degree less or equal than six and for any<em> n ≥ 2</em> we construct a family of dimension<em> ≥ n − 1</em> of non-isomorphic simple ACM bundles of rank n on <em>X</em>.<br />http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/760ACM bundlesDel Pezzo surfaces |
spellingShingle | Joan Pons-Llopis Fabio Tonini ACM Bundles on Del Pezzo surfaces Le Matematiche ACM bundles Del Pezzo surfaces |
title | ACM Bundles on Del Pezzo surfaces |
title_full | ACM Bundles on Del Pezzo surfaces |
title_fullStr | ACM Bundles on Del Pezzo surfaces |
title_full_unstemmed | ACM Bundles on Del Pezzo surfaces |
title_short | ACM Bundles on Del Pezzo surfaces |
title_sort | acm bundles on del pezzo surfaces |
topic | ACM bundles Del Pezzo surfaces |
url | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/760 |
work_keys_str_mv | AT joanponsllopis acmbundlesondelpezzosurfaces AT fabiotonini acmbundlesondelpezzosurfaces |