Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices

We obtain several convexity statements involving positive definite matrices. In particular, if $A,B,X,Y$ are invertible matrices and $A,B$ are positive, we show that the map \[ (s,t) \mapsto \mathrm{Tr}\,\log \left(X^*A^sX + Y^*B^tY\right) \] is jointly convex on $\mathbb{R}^2$. This is related to s...

Full description

Bibliographic Details
Main Authors: Bourin, Jean-Christophe, Shao, Jingjing
Format: Article
Language:English
Published: Académie des sciences 2020-10-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.25/
_version_ 1827785280799637504
author Bourin, Jean-Christophe
Shao, Jingjing
author_facet Bourin, Jean-Christophe
Shao, Jingjing
author_sort Bourin, Jean-Christophe
collection DOAJ
description We obtain several convexity statements involving positive definite matrices. In particular, if $A,B,X,Y$ are invertible matrices and $A,B$ are positive, we show that the map \[ (s,t) \mapsto \mathrm{Tr}\,\log \left(X^*A^sX + Y^*B^tY\right) \] is jointly convex on $\mathbb{R}^2$. This is related to some exotic matrix Hölder inequalities such as \[ \left\Vert \sinh \left(\sum _{i=1}^m A_iB_i\right) \right\Vert \le \left\Vert \sinh \left(\sum _{i=1}^m A_i^p\right) \right\Vert ^{1/p} \left\Vert \sinh \left(\sum _{i=1}^m B_i^q\right) \right\Vert ^{1/q} \] for all positive matrices $A_i, B_i$, such that $A_iB_i=B_iA_i$, conjugate exponents $p,q$ and unitarily invariant norms $\Vert \cdot \Vert $. Our approach to obtain these results consists in studying the behaviour of some functionals along the geodesics of the Riemanian manifold of positive definite matrices.
first_indexed 2024-03-11T16:16:56Z
format Article
id doaj.art-1490b99409354c81835a41ee1af48ee0
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:16:56Z
publishDate 2020-10-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-1490b99409354c81835a41ee1af48ee02023-10-24T14:18:57ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692020-10-01358664564910.5802/crmath.2510.5802/crmath.25Convex maps on $\protect \mathbb{R}^n$ and positive definite matricesBourin, Jean-Christophe0Shao, Jingjing1Laboratoire de mathématiques, Université de Franche-Comté, 25000 Besançon, FranceCollege of Mathematics and Statistic Sciences, Ludong University, Yantai 264001, ChinaWe obtain several convexity statements involving positive definite matrices. In particular, if $A,B,X,Y$ are invertible matrices and $A,B$ are positive, we show that the map \[ (s,t) \mapsto \mathrm{Tr}\,\log \left(X^*A^sX + Y^*B^tY\right) \] is jointly convex on $\mathbb{R}^2$. This is related to some exotic matrix Hölder inequalities such as \[ \left\Vert \sinh \left(\sum _{i=1}^m A_iB_i\right) \right\Vert \le \left\Vert \sinh \left(\sum _{i=1}^m A_i^p\right) \right\Vert ^{1/p} \left\Vert \sinh \left(\sum _{i=1}^m B_i^q\right) \right\Vert ^{1/q} \] for all positive matrices $A_i, B_i$, such that $A_iB_i=B_iA_i$, conjugate exponents $p,q$ and unitarily invariant norms $\Vert \cdot \Vert $. Our approach to obtain these results consists in studying the behaviour of some functionals along the geodesics of the Riemanian manifold of positive definite matrices.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.25/
spellingShingle Bourin, Jean-Christophe
Shao, Jingjing
Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
Comptes Rendus. Mathématique
title Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
title_full Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
title_fullStr Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
title_full_unstemmed Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
title_short Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
title_sort convex maps on protect mathbb r n and positive definite matrices
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.25/
work_keys_str_mv AT bourinjeanchristophe convexmapsonprotectmathbbrnandpositivedefinitematrices
AT shaojingjing convexmapsonprotectmathbbrnandpositivedefinitematrices