Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region

<p>The period range between 6 and 480&thinsp;min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acqu...

Full description

Bibliographic Details
Main Authors: R. Sedlak, A. Zuhr, C. Schmidt, S. Wüst, M. Bittner, G. G. Didebulidze, C. Price
Format: Article
Language:English
Published: Copernicus Publications 2020-09-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/13/5117/2020/amt-13-5117-2020.pdf
_version_ 1819182196237271040
author R. Sedlak
A. Zuhr
A. Zuhr
A. Zuhr
C. Schmidt
S. Wüst
M. Bittner
M. Bittner
G. G. Didebulidze
C. Price
author_facet R. Sedlak
A. Zuhr
A. Zuhr
A. Zuhr
C. Schmidt
S. Wüst
M. Bittner
M. Bittner
G. G. Didebulidze
C. Price
author_sort R. Sedlak
collection DOAJ
description <p>The period range between 6 and 480&thinsp;min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* airglow spectrometers called GRIPS (GRound-based Infrared P-branch Spectrometer) within the framework of the NDMC (Network for the Detection of Mesospheric Change; <span class="uri">https://ndmc.dlr.de</span>, last access: 22 September 2020). We analyse data measured at the NDMC sites Abastumani in Georgia (ABA; 41.75<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 42.82<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) in Norway (ALR; 69.28<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 16.01<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), Neumayer Station III in the Antarctic (NEU; 70.67<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, 8.27<span class="inline-formula"><sup>∘</sup></span>&thinsp;W), Observatoire de Haute-Provence in France (OHP; 43.93<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 5.71<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), Oberpfaffenhofen in Germany (OPN; 48.09<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 11.28<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), Sonnblick in Austria (SBO; 47.05<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 12.95<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), Tel Aviv in Israel (TAV; 32.11<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 34.80<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), and the Environmental Research Station Schneefernerhaus on top of Zugspitze mountain in Germany (UFS; 47.42<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 10.98<span class="inline-formula"><sup>∘</sup></span>&thinsp;E). All eight instruments are identical in construction and deliver consistent and comparable data sets.</p> <p>For periods shorter than 60&thinsp;min, gravity wave activity is found to be relatively low and hardly shows any seasonal variability on the timescale of months. We find a semi-annual cycle with maxima during winter and summer for gravity waves with periods longer than 60&thinsp;min, which gradually develops into an annual cycle with a winter maximum for longer periods. The transition from a semi-annual pattern to a primarily annual pattern starts around a gravity wave period of 200&thinsp;min. Although there are indications of enhanced gravity wave sources above mountainous terrain, the overall pattern of gravity wave activity does not differ significantly for the abovementioned observation sites. Thus, large-scale mechanisms such as stratospheric wind filtering seem to dominate the evolution of mesospheric gravity wave activity.</p>
first_indexed 2024-12-22T22:42:17Z
format Article
id doaj.art-1490de6dbccc4df8a917e5a4c63e6c29
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-22T22:42:17Z
publishDate 2020-09-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-1490de6dbccc4df8a917e5a4c63e6c292022-12-21T18:10:10ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-09-01135117512810.5194/amt-13-5117-2020Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) regionR. Sedlak0A. Zuhr1A. Zuhr2A. Zuhr3C. Schmidt4S. Wüst5M. Bittner6M. Bittner7G. G. Didebulidze8C. Price9Institute of Physics, University of Augsburg, Augsburg, GermanyInstitute of Physics, University of Augsburg, Augsburg, GermanyGerman Remote Sensing Data Center, German Aerospace Center, Oberpfaffenhofen, Germanynow at: Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, GermanyGerman Remote Sensing Data Center, German Aerospace Center, Oberpfaffenhofen, GermanyGerman Remote Sensing Data Center, German Aerospace Center, Oberpfaffenhofen, GermanyInstitute of Physics, University of Augsburg, Augsburg, GermanyGerman Remote Sensing Data Center, German Aerospace Center, Oberpfaffenhofen, GermanyGeorgian National Astrophysical Observatory, Ilia State University, Tbilisi, GeorgiaPorter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel<p>The period range between 6 and 480&thinsp;min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* airglow spectrometers called GRIPS (GRound-based Infrared P-branch Spectrometer) within the framework of the NDMC (Network for the Detection of Mesospheric Change; <span class="uri">https://ndmc.dlr.de</span>, last access: 22 September 2020). We analyse data measured at the NDMC sites Abastumani in Georgia (ABA; 41.75<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 42.82<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) in Norway (ALR; 69.28<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 16.01<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), Neumayer Station III in the Antarctic (NEU; 70.67<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, 8.27<span class="inline-formula"><sup>∘</sup></span>&thinsp;W), Observatoire de Haute-Provence in France (OHP; 43.93<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 5.71<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), Oberpfaffenhofen in Germany (OPN; 48.09<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 11.28<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), Sonnblick in Austria (SBO; 47.05<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 12.95<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), Tel Aviv in Israel (TAV; 32.11<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 34.80<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), and the Environmental Research Station Schneefernerhaus on top of Zugspitze mountain in Germany (UFS; 47.42<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 10.98<span class="inline-formula"><sup>∘</sup></span>&thinsp;E). All eight instruments are identical in construction and deliver consistent and comparable data sets.</p> <p>For periods shorter than 60&thinsp;min, gravity wave activity is found to be relatively low and hardly shows any seasonal variability on the timescale of months. We find a semi-annual cycle with maxima during winter and summer for gravity waves with periods longer than 60&thinsp;min, which gradually develops into an annual cycle with a winter maximum for longer periods. The transition from a semi-annual pattern to a primarily annual pattern starts around a gravity wave period of 200&thinsp;min. Although there are indications of enhanced gravity wave sources above mountainous terrain, the overall pattern of gravity wave activity does not differ significantly for the abovementioned observation sites. Thus, large-scale mechanisms such as stratospheric wind filtering seem to dominate the evolution of mesospheric gravity wave activity.</p>https://amt.copernicus.org/articles/13/5117/2020/amt-13-5117-2020.pdf
spellingShingle R. Sedlak
A. Zuhr
A. Zuhr
A. Zuhr
C. Schmidt
S. Wüst
M. Bittner
M. Bittner
G. G. Didebulidze
C. Price
Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region
Atmospheric Measurement Techniques
title Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region
title_full Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region
title_fullStr Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region
title_full_unstemmed Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region
title_short Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region
title_sort intra annual variations of spectrally resolved gravity wave activity in the upper mesosphere lower thermosphere umlt region
url https://amt.copernicus.org/articles/13/5117/2020/amt-13-5117-2020.pdf
work_keys_str_mv AT rsedlak intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion
AT azuhr intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion
AT azuhr intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion
AT azuhr intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion
AT cschmidt intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion
AT swust intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion
AT mbittner intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion
AT mbittner intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion
AT ggdidebulidze intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion
AT cprice intraannualvariationsofspectrallyresolvedgravitywaveactivityintheuppermesospherelowerthermosphereumltregion