Classification of Textures Using Filter Based Local Feature Extraction

In this work local features are used in feature extraction process in image processing for textures. The local binary pattern feature extraction method from textures are introduced. Filtering is also used during the feature extraction process for getting discriminative features. To show the effectiv...

Full description

Bibliographic Details
Main Authors: Bocekci Veysel Gokhan, Yildiz Kazim
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20167503001
Description
Summary:In this work local features are used in feature extraction process in image processing for textures. The local binary pattern feature extraction method from textures are introduced. Filtering is also used during the feature extraction process for getting discriminative features. To show the effectiveness of the algorithm before the extraction process, three different noise are added to both train and test images. Wiener filter and median filter are used to remove the noise from images. We evaluate the performance of the method with Naïve Bayesian classifier. We conduct the comparative analysis on benchmark dataset with different filtering and size. Our experiments demonstrate that feature extraction process combine with filtering give promising results on noisy images.
ISSN:2261-236X