Kinetic theory of Jean instability in Eddington-inspired Born–Infeld gravity

Abstract We analyze the stability of self-gravitating systems which dynamics is investigated using the collisionless Boltzmann equation, and the modified Poisson equation of Eddington-inspired Born–Infield gravity. These equations provide a description of the Jeans paradigm used to determine the cri...

Full description

Bibliographic Details
Main Authors: Ivan De Martino, Antonio Capolupo
Format: Article
Language:English
Published: SpringerOpen 2017-10-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-017-5300-0
Description
Summary:Abstract We analyze the stability of self-gravitating systems which dynamics is investigated using the collisionless Boltzmann equation, and the modified Poisson equation of Eddington-inspired Born–Infield gravity. These equations provide a description of the Jeans paradigm used to determine the critical scale above which such systems collapse. At equilibrium, the systems are described using the time-independent Maxwell–Boltzmann distribution function $$f_0(v)$$ f0(v) . Considering small perturbations to this equilibrium state, we obtain a modified dispersion relation, and we find a new characteristic scale length. Our results indicate that the dynamics of self-gravitating astrophysical systems can be fully addressed in the Eddington-inspired Born–Infeld gravity. The latter modifies the Jeans instability in high densities environments, while its effects become negligible in star formation regions.
ISSN:1434-6044
1434-6052