On the Eventually Periodic Continued <i>β</i>-Fractions and Their Lévy Constants

In this paper, we consider continued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-fractions with golden ratio base <inline-formula>...

Full description

Bibliographic Details
Main Authors: Qian Xiao, Chao Ma, Shuailing Wang
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/1/127
_version_ 1797498303231819776
author Qian Xiao
Chao Ma
Shuailing Wang
author_facet Qian Xiao
Chao Ma
Shuailing Wang
author_sort Qian Xiao
collection DOAJ
description In this paper, we consider continued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-fractions with golden ratio base <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>. We show that if the continued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-fraction expansion of a non-negative real number is eventually periodic, then it is the root of a quadratic irreducible polynomial with the coefficients in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">Z</mi><mo>[</mo><mi>β</mi><mo>]</mo></mrow></semantics></math></inline-formula> and we conjecture the converse is false, which is different from Lagrange’s theorem for the regular continued fractions. We prove that the set of Lévy constants of the points with eventually periodic continued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-fraction expansion is dense in [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">c</mi></semantics></math></inline-formula>, +<i>∞</i>), where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">c</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo form="prefix">log</mo><mfrac><mrow><mi>β</mi><mo>+</mo><mn>2</mn><mo>−</mo><msqrt><mrow><mn>5</mn><mi>β</mi><mo>+</mo><mn>1</mn></mrow></msqrt></mrow><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T03:31:32Z
format Article
id doaj.art-14ad4a8946d4499fab2c376cf25e8528
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:31:32Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-14ad4a8946d4499fab2c376cf25e85282023-11-23T11:54:34ZengMDPI AGMathematics2227-73902022-01-0110112710.3390/math10010127On the Eventually Periodic Continued <i>β</i>-Fractions and Their Lévy ConstantsQian Xiao0Chao Ma1Shuailing Wang2School of Mathematics, South China University of Technology, Guangzhou 510640, ChinaFaculty of Information Technology, Macau University of Science and Technology, Macau 999078, ChinaSchool of Mathematics, South China University of Technology, Guangzhou 510640, ChinaIn this paper, we consider continued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-fractions with golden ratio base <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>. We show that if the continued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-fraction expansion of a non-negative real number is eventually periodic, then it is the root of a quadratic irreducible polynomial with the coefficients in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">Z</mi><mo>[</mo><mi>β</mi><mo>]</mo></mrow></semantics></math></inline-formula> and we conjecture the converse is false, which is different from Lagrange’s theorem for the regular continued fractions. We prove that the set of Lévy constants of the points with eventually periodic continued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-fraction expansion is dense in [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">c</mi></semantics></math></inline-formula>, +<i>∞</i>), where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">c</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo form="prefix">log</mo><mfrac><mrow><mi>β</mi><mo>+</mo><mn>2</mn><mo>−</mo><msqrt><mrow><mn>5</mn><mi>β</mi><mo>+</mo><mn>1</mn></mrow></msqrt></mrow><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/10/1/127<i>β</i>-integercontinued <i>β</i>-fractionseventually periodicLévy constant
spellingShingle Qian Xiao
Chao Ma
Shuailing Wang
On the Eventually Periodic Continued <i>β</i>-Fractions and Their Lévy Constants
Mathematics
<i>β</i>-integer
continued <i>β</i>-fractions
eventually periodic
Lévy constant
title On the Eventually Periodic Continued <i>β</i>-Fractions and Their Lévy Constants
title_full On the Eventually Periodic Continued <i>β</i>-Fractions and Their Lévy Constants
title_fullStr On the Eventually Periodic Continued <i>β</i>-Fractions and Their Lévy Constants
title_full_unstemmed On the Eventually Periodic Continued <i>β</i>-Fractions and Their Lévy Constants
title_short On the Eventually Periodic Continued <i>β</i>-Fractions and Their Lévy Constants
title_sort on the eventually periodic continued i β i fractions and their levy constants
topic <i>β</i>-integer
continued <i>β</i>-fractions
eventually periodic
Lévy constant
url https://www.mdpi.com/2227-7390/10/1/127
work_keys_str_mv AT qianxiao ontheeventuallyperiodiccontinuedibifractionsandtheirlevyconstants
AT chaoma ontheeventuallyperiodiccontinuedibifractionsandtheirlevyconstants
AT shuailingwang ontheeventuallyperiodiccontinuedibifractionsandtheirlevyconstants