Root traits in Crambe abyssinica Hochst and Raphanus sativus L. plants are associated with differential tolerance to water deficit and post-stress recovery

Background Previous studies have shown that Crambe abyssinica and Raphanus sativus are physiologically tolerant to water deficits; however, there is a lack of information on the mechanisms responsible for their tolerance regarding root morphological characteristics. This study aimed to characterize...

Full description

Bibliographic Details
Main Authors: Luciana Minervina de Freitas Moura, Alan Carlos da Costa, Roberto Gomes Vital, Adinan Alves da Silva, Arthur de Almeida Rodrigues, Silvio Alencar Cândido-Sobrinho, Caroline Müller
Format: Article
Language:English
Published: PeerJ Inc. 2022-06-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/13595.pdf
Description
Summary:Background Previous studies have shown that Crambe abyssinica and Raphanus sativus are physiologically tolerant to water deficits; however, there is a lack of information on the mechanisms responsible for their tolerance regarding root morphological characteristics. This study aimed to characterize morphological changes in the root system of C. abyssinica and R. sativus subjected water deficit, as well as to identify the responses that improve tolerance and post-stress recovery capacity of these plants. Methods Independent experiments for each specieswere performed in a controlled greenhouse, where plants were randomly set in a randomized block design with five replicates. Plants of C. abyssinica and R. sativus were cultivated in pots and exposed to well-watered treatment (WW; 90% water holding capacity–WHC of the substrate) or water deficit (WD; 40% WHC) conditions, at 28 days after planting. The plants were kept under WD for 7, 14, or 21 days with rehydration soon after each episode of water deficit. Assessment of water relations, biomass allocation, leaf and root system morphological characteristics and gas exchange were performed after each period of water deficit and 48 h after rehydration. Results The water deficit reduced the water status of both species, and morphological and biomass allocation were not recovered after rehydration. Photosynthesis of C. abyssinica decreased with prolonged water deficit, which was also not recovered after rehydration. In R. sativus, photosynthesis was not altered by WD for 21 days, and a higher WUE was recorded. Root morphology of R. sativus was mainly affected at 14 days of WD, while the traits related to very fine roots increased at 21 days of WD, when compared to WW plants. Thus, R. sativus has shown greater tolerance to water deficits mainly due to the presence of very fine roots throughout the period of stress, when compared to C. abyssinica in which the fine roots predominated.
ISSN:2167-8359