Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective

The dissociation rate (koff) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of koff. Next, we discuss the impact of the potential energy f...

Full description

Bibliographic Details
Main Authors: Katya Ahmad, Andrea Rizzi, Riccardo Capelli, Davide Mandelli, Wenping Lyu, Paolo Carloni
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-06-01
Series:Frontiers in Molecular Biosciences
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmolb.2022.899805/full
_version_ 1818205615208529920
author Katya Ahmad
Andrea Rizzi
Andrea Rizzi
Riccardo Capelli
Davide Mandelli
Wenping Lyu
Wenping Lyu
Paolo Carloni
Paolo Carloni
author_facet Katya Ahmad
Andrea Rizzi
Andrea Rizzi
Riccardo Capelli
Davide Mandelli
Wenping Lyu
Wenping Lyu
Paolo Carloni
Paolo Carloni
author_sort Katya Ahmad
collection DOAJ
description The dissociation rate (koff) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of koff. Next, we discuss the impact of the potential energy function models on the accuracy of calculated koff values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
first_indexed 2024-12-12T03:59:57Z
format Article
id doaj.art-14bf3dc338c247c8bf5b4ef51f803dc3
institution Directory Open Access Journal
issn 2296-889X
language English
last_indexed 2024-12-12T03:59:57Z
publishDate 2022-06-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Molecular Biosciences
spelling doaj.art-14bf3dc338c247c8bf5b4ef51f803dc32022-12-22T00:39:05ZengFrontiers Media S.A.Frontiers in Molecular Biosciences2296-889X2022-06-01910.3389/fmolb.2022.899805899805Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and PerspectiveKatya Ahmad0Andrea Rizzi1Andrea Rizzi2Riccardo Capelli3Davide Mandelli4Wenping Lyu5Wenping Lyu6Paolo Carloni7Paolo Carloni8Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, GermanyComputational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, GermanyAtomistic Simulations, Istituto Italiano di Tecnologia, Genova, ItalyDepartment of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, ItalyComputational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, GermanyWarshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, ChinaSchool of Chemistry and Materials Science, University of Science and Technology of China, Hefei, ChinaComputational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, GermanyMolecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, GermanyThe dissociation rate (koff) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of koff. Next, we discuss the impact of the potential energy function models on the accuracy of calculated koff values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.https://www.frontiersin.org/articles/10.3389/fmolb.2022.899805/fullkineticsdrug discoveryQM/MMparallel computingmachine learningenhanced sampling
spellingShingle Katya Ahmad
Andrea Rizzi
Andrea Rizzi
Riccardo Capelli
Davide Mandelli
Wenping Lyu
Wenping Lyu
Paolo Carloni
Paolo Carloni
Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective
Frontiers in Molecular Biosciences
kinetics
drug discovery
QM/MM
parallel computing
machine learning
enhanced sampling
title Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective
title_full Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective
title_fullStr Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective
title_full_unstemmed Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective
title_short Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective
title_sort enhanced sampling simulations for the estimation of ligand binding kinetics current status and perspective
topic kinetics
drug discovery
QM/MM
parallel computing
machine learning
enhanced sampling
url https://www.frontiersin.org/articles/10.3389/fmolb.2022.899805/full
work_keys_str_mv AT katyaahmad enhancedsamplingsimulationsfortheestimationofligandbindingkineticscurrentstatusandperspective
AT andrearizzi enhancedsamplingsimulationsfortheestimationofligandbindingkineticscurrentstatusandperspective
AT andrearizzi enhancedsamplingsimulationsfortheestimationofligandbindingkineticscurrentstatusandperspective
AT riccardocapelli enhancedsamplingsimulationsfortheestimationofligandbindingkineticscurrentstatusandperspective
AT davidemandelli enhancedsamplingsimulationsfortheestimationofligandbindingkineticscurrentstatusandperspective
AT wenpinglyu enhancedsamplingsimulationsfortheestimationofligandbindingkineticscurrentstatusandperspective
AT wenpinglyu enhancedsamplingsimulationsfortheestimationofligandbindingkineticscurrentstatusandperspective
AT paolocarloni enhancedsamplingsimulationsfortheestimationofligandbindingkineticscurrentstatusandperspective
AT paolocarloni enhancedsamplingsimulationsfortheestimationofligandbindingkineticscurrentstatusandperspective