GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques

Agriculture accounts for a large percentage of nitrous oxide (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi><...

Full description

Bibliographic Details
Main Authors: Kaoutar Benghzial, Hind Raki, Sami Bamansour, Mouad Elhamdi, Yahya Aalaila, Diego H. Peluffo-Ordóñez
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/14/2/283
_version_ 1797622393351438336
author Kaoutar Benghzial
Hind Raki
Sami Bamansour
Mouad Elhamdi
Yahya Aalaila
Diego H. Peluffo-Ordóñez
author_facet Kaoutar Benghzial
Hind Raki
Sami Bamansour
Mouad Elhamdi
Yahya Aalaila
Diego H. Peluffo-Ordóñez
author_sort Kaoutar Benghzial
collection DOAJ
description Agriculture accounts for a large percentage of nitrous oxide (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula>) emissions, mainly due to the misapplication of nitrogen-based fertilizers, leading to an increase in the greenhouse gas (GHG) footprint. These emissions are of a direct nature, released straight into the atmosphere through nitrification and denitrification, or of an indirect nature, mainly through nitrate leaching, runoff, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> volatilization processes. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions are largely ascribed to the agricultural sector, which represents a threat to sustainability and food production, subsequent to the radical contribution to climate change. In this connection, it is crucial to unveil the relationship between synthetic N fertilizer global use and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions. To this end, we worked on a dataset drawn from a recent study, which estimates direct and indirect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions according to each country, by the Intergovernmental Panel on Climate Change (IPCC) guidelines. Machine learning tools are considered great explainable techniques when dealing with air quality problems. Hence, our work focuses on expectile regression (ER) based-approaches to predict <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions based on N fertilizer use. In contrast to classical linear regression (LR), this method allows for heteroscedasticity and omits a parametric specification of the underlying distribution. ER provides a complete picture of the target variable’s distribution, especially when the tails are of interest, or in dealing with heavy-tailed distributions. In this work, we applied expectile regression and the kernel expectile regression estimator (KERE) to predict direct and indirect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions. The results outline both the flexibility and competitiveness of ER-based techniques in regard to the state-of-the-art regression approaches.
first_indexed 2024-03-11T09:10:41Z
format Article
id doaj.art-14c7ae753c014ee9bffeec61d279d1f6
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-11T09:10:41Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-14c7ae753c014ee9bffeec61d279d1f62023-11-16T19:02:40ZengMDPI AGAtmosphere2073-44332023-01-0114228310.3390/atmos14020283GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression TechniquesKaoutar Benghzial0Hind Raki1Sami Bamansour2Mouad Elhamdi3Yahya Aalaila4Diego H. Peluffo-Ordóñez5SDAS Research Group, Ben Guerir 43150, MoroccoSDAS Research Group, Ben Guerir 43150, MoroccoSDAS Research Group, Ben Guerir 43150, MoroccoSDAS Research Group, Ben Guerir 43150, MoroccoSDAS Research Group, Ben Guerir 43150, MoroccoSDAS Research Group, Ben Guerir 43150, MoroccoAgriculture accounts for a large percentage of nitrous oxide (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula>) emissions, mainly due to the misapplication of nitrogen-based fertilizers, leading to an increase in the greenhouse gas (GHG) footprint. These emissions are of a direct nature, released straight into the atmosphere through nitrification and denitrification, or of an indirect nature, mainly through nitrate leaching, runoff, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> volatilization processes. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions are largely ascribed to the agricultural sector, which represents a threat to sustainability and food production, subsequent to the radical contribution to climate change. In this connection, it is crucial to unveil the relationship between synthetic N fertilizer global use and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions. To this end, we worked on a dataset drawn from a recent study, which estimates direct and indirect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions according to each country, by the Intergovernmental Panel on Climate Change (IPCC) guidelines. Machine learning tools are considered great explainable techniques when dealing with air quality problems. Hence, our work focuses on expectile regression (ER) based-approaches to predict <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions based on N fertilizer use. In contrast to classical linear regression (LR), this method allows for heteroscedasticity and omits a parametric specification of the underlying distribution. ER provides a complete picture of the target variable’s distribution, especially when the tails are of interest, or in dealing with heavy-tailed distributions. In this work, we applied expectile regression and the kernel expectile regression estimator (KERE) to predict direct and indirect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi></mrow></semantics></math></inline-formula> emissions. The results outline both the flexibility and competitiveness of ER-based techniques in regard to the state-of-the-art regression approaches.https://www.mdpi.com/2073-4433/14/2/283air qualitybio-meteorologyexpectile regressiongreenhouse gas emissionsnitrogen-based fertilizersnitrous oxide
spellingShingle Kaoutar Benghzial
Hind Raki
Sami Bamansour
Mouad Elhamdi
Yahya Aalaila
Diego H. Peluffo-Ordóñez
GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques
Atmosphere
air quality
bio-meteorology
expectile regression
greenhouse gas emissions
nitrogen-based fertilizers
nitrous oxide
title GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques
title_full GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques
title_fullStr GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques
title_full_unstemmed GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques
title_short GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques
title_sort ghg global emission prediction of synthetic n fertilizers using expectile regression techniques
topic air quality
bio-meteorology
expectile regression
greenhouse gas emissions
nitrogen-based fertilizers
nitrous oxide
url https://www.mdpi.com/2073-4433/14/2/283
work_keys_str_mv AT kaoutarbenghzial ghgglobalemissionpredictionofsyntheticnfertilizersusingexpectileregressiontechniques
AT hindraki ghgglobalemissionpredictionofsyntheticnfertilizersusingexpectileregressiontechniques
AT samibamansour ghgglobalemissionpredictionofsyntheticnfertilizersusingexpectileregressiontechniques
AT mouadelhamdi ghgglobalemissionpredictionofsyntheticnfertilizersusingexpectileregressiontechniques
AT yahyaaalaila ghgglobalemissionpredictionofsyntheticnfertilizersusingexpectileregressiontechniques
AT diegohpeluffoordonez ghgglobalemissionpredictionofsyntheticnfertilizersusingexpectileregressiontechniques