Tissue Barrier-on-Chip: A Technology for Reproducible Practice in Drug Testing

One key application of organ-on-chip systems is the examination of drug transport and absorption through native cell barriers such the blood–brain barrier. To overcome previous hurdles related to the transferability of existing static cell cultivation protocols and polydimethylsiloxane (PDMS) as the...

Full description

Bibliographic Details
Main Authors: Eugen V. Koch, Verena Ledwig, Sebastian Bendas, Stephan Reichl, Andreas Dietzel
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Pharmaceutics
Subjects:
Online Access:https://www.mdpi.com/1999-4923/14/7/1451
Description
Summary:One key application of organ-on-chip systems is the examination of drug transport and absorption through native cell barriers such the blood–brain barrier. To overcome previous hurdles related to the transferability of existing static cell cultivation protocols and polydimethylsiloxane (PDMS) as the construction material, a chip platform with key innovations for practical use in drug-permeation testing is presented. First, the design allows for the transfer of barrier-forming tissue into the microfluidic system after cells have been seeded on porous polymer or Si3N4 membranes. From this, we can follow highly reproducible models and cultivation protocols established for static drug testing, from coating the membrane to seeding the cells and cell analysis. Second, the perfusion system is a microscopable glass chip with two fluid compartments with transparent embedded electrodes separated by the membrane. The reversible closure in a clamping adapter requires only a very thin PDMS sealing with negligible liquid contact, thereby eliminating well-known disadvantages of PDMS, such as its limited usability in the quantitative measurements of hydrophobic drug molecule concentrations. Equipped with tissue transfer capabilities, perfusion chamber inertness and air bubble trapping, and supplemented with automated fluid control, the presented system is a promising platform for studying established in vitro models of tissue barriers under reproducible microfluidic perfusion conditions.
ISSN:1999-4923