Structure and Thermodynamics of Li<sup>+</sup>Ar<i><sub>n</sub></i> Clusters beyond the Second Solvation Shell

Small Li<sup>+</sup>Ar<i><sub>n</sub></i> clusters are employed in this work as model systems to study microsolvation. Although first and second solvation shells are expected to be the most relevant ones for this type of atomic solvents, it is also interesting to...

Full description

Bibliographic Details
Main Authors: Jorge M. C. Marques, Frederico V. Prudente
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/16/2/229
_version_ 1797296916242890752
author Jorge M. C. Marques
Frederico V. Prudente
author_facet Jorge M. C. Marques
Frederico V. Prudente
author_sort Jorge M. C. Marques
collection DOAJ
description Small Li<sup>+</sup>Ar<i><sub>n</sub></i> clusters are employed in this work as model systems to study microsolvation. Although first and second solvation shells are expected to be the most relevant ones for this type of atomic solvents, it is also interesting to explore larger clusters in order to identify the influence of external atoms on structural and thermodynamic properties. In this work, we perform a global geometry optimization for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Li</mi><mo>+</mo></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Ar</mi><mi>n</mi></msub></semantics></math></inline-formula> clusters (with <i>n</i> = 41–100) and parallel tempering Monte Carlo (PTMC) simulations for some selected sizes. The results show that global minimum structures of large clusters always have 6 argon atoms in the first solvation shell while maintaining the number of 14 or 16 argon atoms in the second one. By contrast, third and fourth solvation shells vary significantly the number of argon atoms with the cluster size, and other shells can hardly be assigned due to the reduced influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Li</mi><mo>+</mo></msup></semantics></math></inline-formula> on the external argon atoms for large clusters. In turn, PTMC calculations show that the melting of the most external solvation shells of large microsolvation clusters occurs at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>∼</mo><mn>50</mn><mspace width="0.166667em"></mspace><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, which is independent of cluster size. Structural transitions can be observed between quasi-degenerated structures at low temperatures. Moreover, the present results highlight the fluxional character of the external solvation shells of these large <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Li</mi><mo>+</mo></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Ar</mi><mi>n</mi></msub></semantics></math></inline-formula> clusters, which may be seen as typical “snowball” structures.
first_indexed 2024-03-07T22:11:44Z
format Article
id doaj.art-14ca19b95e994b52b4c10f59e3dba603
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-07T22:11:44Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-14ca19b95e994b52b4c10f59e3dba6032024-02-23T15:36:04ZengMDPI AGSymmetry2073-89942024-02-0116222910.3390/sym16020229Structure and Thermodynamics of Li<sup>+</sup>Ar<i><sub>n</sub></i> Clusters beyond the Second Solvation ShellJorge M. C. Marques0Frederico V. Prudente1CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, PortugalInstituto de Física, Universidade Federal da Bahia, Salvador 40170-115, BA, BrazilSmall Li<sup>+</sup>Ar<i><sub>n</sub></i> clusters are employed in this work as model systems to study microsolvation. Although first and second solvation shells are expected to be the most relevant ones for this type of atomic solvents, it is also interesting to explore larger clusters in order to identify the influence of external atoms on structural and thermodynamic properties. In this work, we perform a global geometry optimization for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Li</mi><mo>+</mo></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Ar</mi><mi>n</mi></msub></semantics></math></inline-formula> clusters (with <i>n</i> = 41–100) and parallel tempering Monte Carlo (PTMC) simulations for some selected sizes. The results show that global minimum structures of large clusters always have 6 argon atoms in the first solvation shell while maintaining the number of 14 or 16 argon atoms in the second one. By contrast, third and fourth solvation shells vary significantly the number of argon atoms with the cluster size, and other shells can hardly be assigned due to the reduced influence of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Li</mi><mo>+</mo></msup></semantics></math></inline-formula> on the external argon atoms for large clusters. In turn, PTMC calculations show that the melting of the most external solvation shells of large microsolvation clusters occurs at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>∼</mo><mn>50</mn><mspace width="0.166667em"></mspace><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, which is independent of cluster size. Structural transitions can be observed between quasi-degenerated structures at low temperatures. Moreover, the present results highlight the fluxional character of the external solvation shells of these large <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>Li</mi><mo>+</mo></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Ar</mi><mi>n</mi></msub></semantics></math></inline-formula> clusters, which may be seen as typical “snowball” structures.https://www.mdpi.com/2073-8994/16/2/229microsolvationparallel tempering Monte Carloglobal optimizationthermodynamic properties
spellingShingle Jorge M. C. Marques
Frederico V. Prudente
Structure and Thermodynamics of Li<sup>+</sup>Ar<i><sub>n</sub></i> Clusters beyond the Second Solvation Shell
Symmetry
microsolvation
parallel tempering Monte Carlo
global optimization
thermodynamic properties
title Structure and Thermodynamics of Li<sup>+</sup>Ar<i><sub>n</sub></i> Clusters beyond the Second Solvation Shell
title_full Structure and Thermodynamics of Li<sup>+</sup>Ar<i><sub>n</sub></i> Clusters beyond the Second Solvation Shell
title_fullStr Structure and Thermodynamics of Li<sup>+</sup>Ar<i><sub>n</sub></i> Clusters beyond the Second Solvation Shell
title_full_unstemmed Structure and Thermodynamics of Li<sup>+</sup>Ar<i><sub>n</sub></i> Clusters beyond the Second Solvation Shell
title_short Structure and Thermodynamics of Li<sup>+</sup>Ar<i><sub>n</sub></i> Clusters beyond the Second Solvation Shell
title_sort structure and thermodynamics of li sup sup ar i sub n sub i clusters beyond the second solvation shell
topic microsolvation
parallel tempering Monte Carlo
global optimization
thermodynamic properties
url https://www.mdpi.com/2073-8994/16/2/229
work_keys_str_mv AT jorgemcmarques structureandthermodynamicsoflisupsuparisubnsubiclustersbeyondthesecondsolvationshell
AT fredericovprudente structureandthermodynamicsoflisupsuparisubnsubiclustersbeyondthesecondsolvationshell