Improving Estimates of Grassland Fractional Vegetation Cover Based on a Pixel Dichotomy Model: A Case Study in Inner Mongolia, China

Linear spectral mixture analysis (SMA) is commonly used to infer fractional vegetation cover (FVC), especially for pixel dichotomy models. However, several sources of uncertainty including normalized difference vegetation index (NDVI) saturation and selection of endmembers inhibit the effectiveness...

Full description

Bibliographic Details
Main Authors: Fei Li, Wei Chen, Yuan Zeng, Qianjun Zhao, Bingfang Wu
Format: Article
Language:English
Published: MDPI AG 2014-05-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/6/6/4705
Description
Summary:Linear spectral mixture analysis (SMA) is commonly used to infer fractional vegetation cover (FVC), especially for pixel dichotomy models. However, several sources of uncertainty including normalized difference vegetation index (NDVI) saturation and selection of endmembers inhibit the effectiveness of SMA for the estimation of FVC. In this study, Moderate-resolution Imaging Spectroradiometer (MODIS) and Landsat 8/Operational Land Imager (OLI) remote sensing data for the early growing season and in situ measurement of spectral reflectance are used to determine the value of endmembers including VIsoil and VIveg, with equally weighted RVI and NDVI measures used in combination to minimize the inherent biases in pure NDVI-based FVC. Their ability to improve estimates of grassland FVC is analyzed at different resolutions. These are shown to improve FVC estimates over NDVI-based SMA models using fixed values for the endmembers. Grassland FVC changes for Inner Mongolia, China from 2000 to 2013 are then monitored using the MODIS data. The results show that changes in most grassland areas are not significant, but in parts of Hulunbeier, south Tongliao, middle Xilin Gol and Erdos, grassland FVC has increased significantly.
ISSN:2072-4292