DCMIP2016: the tropical cyclone test case
<p>This paper describes and analyzes the Reed–Jablonowski (RJ) tropical cyclone (TC) test case used in the 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). This intermediate-complexity test case analyzes the evolution of a weak vortex into a TC in an idealized tropical environmen...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2024-04-01
|
Series: | Geoscientific Model Development |
Online Access: | https://gmd.copernicus.org/articles/17/2493/2024/gmd-17-2493-2024.pdf |
_version_ | 1797226201224314880 |
---|---|
author | J. L. Willson K. A. Reed C. Jablonowski J. Kent J. Kent P. H. Lauritzen R. Nair M. A. Taylor P. A. Ullrich C. M. Zarzycki D. M. Hall D. M. Hall D. Dazlich R. Heikes C. Konor D. Randall T. Dubos Y. Meurdesoif X. Chen X. Chen L. Harris C. Kühnlein V. Lee A. Qaddouri C. Girard M. Giorgetta D. Reinert H. Miura T. Ohno R. Yoshida |
author_facet | J. L. Willson K. A. Reed C. Jablonowski J. Kent J. Kent P. H. Lauritzen R. Nair M. A. Taylor P. A. Ullrich C. M. Zarzycki D. M. Hall D. M. Hall D. Dazlich R. Heikes C. Konor D. Randall T. Dubos Y. Meurdesoif X. Chen X. Chen L. Harris C. Kühnlein V. Lee A. Qaddouri C. Girard M. Giorgetta D. Reinert H. Miura T. Ohno R. Yoshida |
author_sort | J. L. Willson |
collection | DOAJ |
description | <p>This paper describes and analyzes the Reed–Jablonowski (RJ) tropical cyclone (TC) test case used in the 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). This intermediate-complexity test case analyzes the evolution of a weak vortex into a TC in an idealized tropical environment. Reference solutions from nine general circulation models (GCMs) with identical simplified physics parameterization packages that participated in DCMIP2016 are analyzed in this study at 50 km horizontal grid spacing, with five of these models also providing solutions at 25 km grid spacing. Evolution of minimum surface pressure (MSP) and maximum 1 km azimuthally averaged wind speed (MWS), the wind–pressure relationship, radial profiles of wind speed and surface pressure, and wind composites are presented for all participating GCMs at both horizontal grid spacings. While all TCs undergo a similar evolution process, some reach significantly higher intensities than others, ultimately impacting their horizontal and vertical structures. TCs simulated at 25 km grid spacings retain these differences but reach higher intensities and are more compact than their 50 km counterparts. These results indicate that dynamical core choice is an essential factor in GCM<span id="page2494"/> development, and future work should be conducted to explore how specific differences within the dynamical core affect TC behavior in GCMs.</p> |
first_indexed | 2024-04-24T14:21:08Z |
format | Article |
id | doaj.art-14fedd18218f4abdb9584d2403e501a8 |
institution | Directory Open Access Journal |
issn | 1991-959X 1991-9603 |
language | English |
last_indexed | 2024-04-24T14:21:08Z |
publishDate | 2024-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Geoscientific Model Development |
spelling | doaj.art-14fedd18218f4abdb9584d2403e501a82024-04-03T06:23:13ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032024-04-01172493250710.5194/gmd-17-2493-2024DCMIP2016: the tropical cyclone test caseJ. L. Willson0K. A. Reed1C. Jablonowski2J. Kent3J. Kent4P. H. Lauritzen5R. Nair6M. A. Taylor7P. A. Ullrich8C. M. Zarzycki9D. M. Hall10D. M. Hall11D. Dazlich12R. Heikes13C. Konor14D. Randall15T. Dubos16Y. Meurdesoif17X. Chen18X. Chen19L. Harris20C. Kühnlein21V. Lee22A. Qaddouri23C. Girard24M. Giorgetta25D. Reinert26H. Miura27T. Ohno28R. Yoshida29School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USASchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USADepartment of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USASchool of Computing and Mathematics, University of South Wales, Pontypridd, Wales, UKnow at: Met Office, Exeter, UKNational Center for Atmospheric Research, Boulder, CO, USANational Center for Atmospheric Research, Boulder, CO, USASandia National Laboratories, Albuquerque, NM, USADepartment of Land, Air and Water Resources, University of California, Davis, Davis, CA, USADepartment of Meteorology and Atmospheric Science, Penn State University, University Park, PA, USADepartment of Computer Science, University of Colorado Boulder, Boulder, CO, USANVIDIA Corporation, Santa Clara, CA, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USAIPSL/Lab. de Météorologie Dynamique, École Polytechnique, Palaiseau, FranceIPSL/Lab. de Météorologie Dynamique, École Polytechnique, Palaiseau, FranceGeophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration, Princeton, NJ, USAInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaGeophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration, Princeton, NJ, USAEuropean Centre for Medium-Range Weather Forecasts (ECMWF), Bonn, GermanyEnvironment and Climate Change Canada (ECCC), Dorval, Quebec, CanadaEnvironment and Climate Change Canada (ECCC), Dorval, Quebec, CanadaEnvironment and Climate Change Canada (ECCC), Dorval, Quebec, CanadaDepartment of the Atmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, GermanyDeutscher Wetterdienst (DWD), Offenbach am Main, GermanyDepartment of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, JapanAtmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, JapanDivision of Natural Environment and Information, Yokohama National University, Kanagawa, Japan<p>This paper describes and analyzes the Reed–Jablonowski (RJ) tropical cyclone (TC) test case used in the 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). This intermediate-complexity test case analyzes the evolution of a weak vortex into a TC in an idealized tropical environment. Reference solutions from nine general circulation models (GCMs) with identical simplified physics parameterization packages that participated in DCMIP2016 are analyzed in this study at 50 km horizontal grid spacing, with five of these models also providing solutions at 25 km grid spacing. Evolution of minimum surface pressure (MSP) and maximum 1 km azimuthally averaged wind speed (MWS), the wind–pressure relationship, radial profiles of wind speed and surface pressure, and wind composites are presented for all participating GCMs at both horizontal grid spacings. While all TCs undergo a similar evolution process, some reach significantly higher intensities than others, ultimately impacting their horizontal and vertical structures. TCs simulated at 25 km grid spacings retain these differences but reach higher intensities and are more compact than their 50 km counterparts. These results indicate that dynamical core choice is an essential factor in GCM<span id="page2494"/> development, and future work should be conducted to explore how specific differences within the dynamical core affect TC behavior in GCMs.</p>https://gmd.copernicus.org/articles/17/2493/2024/gmd-17-2493-2024.pdf |
spellingShingle | J. L. Willson K. A. Reed C. Jablonowski J. Kent J. Kent P. H. Lauritzen R. Nair M. A. Taylor P. A. Ullrich C. M. Zarzycki D. M. Hall D. M. Hall D. Dazlich R. Heikes C. Konor D. Randall T. Dubos Y. Meurdesoif X. Chen X. Chen L. Harris C. Kühnlein V. Lee A. Qaddouri C. Girard M. Giorgetta D. Reinert H. Miura T. Ohno R. Yoshida DCMIP2016: the tropical cyclone test case Geoscientific Model Development |
title | DCMIP2016: the tropical cyclone test case |
title_full | DCMIP2016: the tropical cyclone test case |
title_fullStr | DCMIP2016: the tropical cyclone test case |
title_full_unstemmed | DCMIP2016: the tropical cyclone test case |
title_short | DCMIP2016: the tropical cyclone test case |
title_sort | dcmip2016 the tropical cyclone test case |
url | https://gmd.copernicus.org/articles/17/2493/2024/gmd-17-2493-2024.pdf |
work_keys_str_mv | AT jlwillson dcmip2016thetropicalcyclonetestcase AT kareed dcmip2016thetropicalcyclonetestcase AT cjablonowski dcmip2016thetropicalcyclonetestcase AT jkent dcmip2016thetropicalcyclonetestcase AT jkent dcmip2016thetropicalcyclonetestcase AT phlauritzen dcmip2016thetropicalcyclonetestcase AT rnair dcmip2016thetropicalcyclonetestcase AT mataylor dcmip2016thetropicalcyclonetestcase AT paullrich dcmip2016thetropicalcyclonetestcase AT cmzarzycki dcmip2016thetropicalcyclonetestcase AT dmhall dcmip2016thetropicalcyclonetestcase AT dmhall dcmip2016thetropicalcyclonetestcase AT ddazlich dcmip2016thetropicalcyclonetestcase AT rheikes dcmip2016thetropicalcyclonetestcase AT ckonor dcmip2016thetropicalcyclonetestcase AT drandall dcmip2016thetropicalcyclonetestcase AT tdubos dcmip2016thetropicalcyclonetestcase AT ymeurdesoif dcmip2016thetropicalcyclonetestcase AT xchen dcmip2016thetropicalcyclonetestcase AT xchen dcmip2016thetropicalcyclonetestcase AT lharris dcmip2016thetropicalcyclonetestcase AT ckuhnlein dcmip2016thetropicalcyclonetestcase AT vlee dcmip2016thetropicalcyclonetestcase AT aqaddouri dcmip2016thetropicalcyclonetestcase AT cgirard dcmip2016thetropicalcyclonetestcase AT mgiorgetta dcmip2016thetropicalcyclonetestcase AT dreinert dcmip2016thetropicalcyclonetestcase AT hmiura dcmip2016thetropicalcyclonetestcase AT tohno dcmip2016thetropicalcyclonetestcase AT ryoshida dcmip2016thetropicalcyclonetestcase |