DCMIP2016: the tropical cyclone test case

<p>This paper describes and analyzes the Reed–Jablonowski (RJ) tropical cyclone (TC) test case used in the 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). This intermediate-complexity test case analyzes the evolution of a weak vortex into a TC in an idealized tropical environmen...

Full description

Bibliographic Details
Main Authors: J. L. Willson, K. A. Reed, C. Jablonowski, J. Kent, P. H. Lauritzen, R. Nair, M. A. Taylor, P. A. Ullrich, C. M. Zarzycki, D. M. Hall, D. Dazlich, R. Heikes, C. Konor, D. Randall, T. Dubos, Y. Meurdesoif, X. Chen, L. Harris, C. Kühnlein, V. Lee, A. Qaddouri, C. Girard, M. Giorgetta, D. Reinert, H. Miura, T. Ohno, R. Yoshida
Format: Article
Language:English
Published: Copernicus Publications 2024-04-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/17/2493/2024/gmd-17-2493-2024.pdf
_version_ 1797226201224314880
author J. L. Willson
K. A. Reed
C. Jablonowski
J. Kent
J. Kent
P. H. Lauritzen
R. Nair
M. A. Taylor
P. A. Ullrich
C. M. Zarzycki
D. M. Hall
D. M. Hall
D. Dazlich
R. Heikes
C. Konor
D. Randall
T. Dubos
Y. Meurdesoif
X. Chen
X. Chen
L. Harris
C. Kühnlein
V. Lee
A. Qaddouri
C. Girard
M. Giorgetta
D. Reinert
H. Miura
T. Ohno
R. Yoshida
author_facet J. L. Willson
K. A. Reed
C. Jablonowski
J. Kent
J. Kent
P. H. Lauritzen
R. Nair
M. A. Taylor
P. A. Ullrich
C. M. Zarzycki
D. M. Hall
D. M. Hall
D. Dazlich
R. Heikes
C. Konor
D. Randall
T. Dubos
Y. Meurdesoif
X. Chen
X. Chen
L. Harris
C. Kühnlein
V. Lee
A. Qaddouri
C. Girard
M. Giorgetta
D. Reinert
H. Miura
T. Ohno
R. Yoshida
author_sort J. L. Willson
collection DOAJ
description <p>This paper describes and analyzes the Reed–Jablonowski (RJ) tropical cyclone (TC) test case used in the 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). This intermediate-complexity test case analyzes the evolution of a weak vortex into a TC in an idealized tropical environment. Reference solutions from nine general circulation models (GCMs) with identical simplified physics parameterization packages that participated in DCMIP2016 are analyzed in this study at 50 km horizontal grid spacing, with five of these models also providing solutions at 25 km grid spacing. Evolution of minimum surface pressure (MSP) and maximum 1 km azimuthally averaged wind speed (MWS), the wind–pressure relationship, radial profiles of wind speed and surface pressure, and wind composites are presented for all participating GCMs at both horizontal grid spacings. While all TCs undergo a similar evolution process, some reach significantly higher intensities than others, ultimately impacting their horizontal and vertical structures. TCs simulated at 25 km grid spacings retain these differences but reach higher intensities and are more compact than their 50 km counterparts. These results indicate that dynamical core choice is an essential factor in GCM<span id="page2494"/> development, and future work should be conducted to explore how specific differences within the dynamical core affect TC behavior in GCMs.</p>
first_indexed 2024-04-24T14:21:08Z
format Article
id doaj.art-14fedd18218f4abdb9584d2403e501a8
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-04-24T14:21:08Z
publishDate 2024-04-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-14fedd18218f4abdb9584d2403e501a82024-04-03T06:23:13ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032024-04-01172493250710.5194/gmd-17-2493-2024DCMIP2016: the tropical cyclone test caseJ. L. Willson0K. A. Reed1C. Jablonowski2J. Kent3J. Kent4P. H. Lauritzen5R. Nair6M. A. Taylor7P. A. Ullrich8C. M. Zarzycki9D. M. Hall10D. M. Hall11D. Dazlich12R. Heikes13C. Konor14D. Randall15T. Dubos16Y. Meurdesoif17X. Chen18X. Chen19L. Harris20C. Kühnlein21V. Lee22A. Qaddouri23C. Girard24M. Giorgetta25D. Reinert26H. Miura27T. Ohno28R. Yoshida29School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USASchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USADepartment of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USASchool of Computing and Mathematics, University of South Wales, Pontypridd, Wales, UKnow at: Met Office, Exeter, UKNational Center for Atmospheric Research, Boulder, CO, USANational Center for Atmospheric Research, Boulder, CO, USASandia National Laboratories, Albuquerque, NM, USADepartment of Land, Air and Water Resources, University of California, Davis, Davis, CA, USADepartment of Meteorology and Atmospheric Science, Penn State University, University Park, PA, USADepartment of Computer Science, University of Colorado Boulder, Boulder, CO, USANVIDIA Corporation, Santa Clara, CA, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USAIPSL/Lab. de Météorologie Dynamique, École Polytechnique, Palaiseau, FranceIPSL/Lab. de Météorologie Dynamique, École Polytechnique, Palaiseau, FranceGeophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration, Princeton, NJ, USAInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaGeophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration, Princeton, NJ, USAEuropean Centre for Medium-Range Weather Forecasts (ECMWF), Bonn, GermanyEnvironment and Climate Change Canada (ECCC), Dorval, Quebec, CanadaEnvironment and Climate Change Canada (ECCC), Dorval, Quebec, CanadaEnvironment and Climate Change Canada (ECCC), Dorval, Quebec, CanadaDepartment of the Atmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, GermanyDeutscher Wetterdienst (DWD), Offenbach am Main, GermanyDepartment of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, JapanAtmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, JapanDivision of Natural Environment and Information, Yokohama National University, Kanagawa, Japan<p>This paper describes and analyzes the Reed–Jablonowski (RJ) tropical cyclone (TC) test case used in the 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). This intermediate-complexity test case analyzes the evolution of a weak vortex into a TC in an idealized tropical environment. Reference solutions from nine general circulation models (GCMs) with identical simplified physics parameterization packages that participated in DCMIP2016 are analyzed in this study at 50 km horizontal grid spacing, with five of these models also providing solutions at 25 km grid spacing. Evolution of minimum surface pressure (MSP) and maximum 1 km azimuthally averaged wind speed (MWS), the wind–pressure relationship, radial profiles of wind speed and surface pressure, and wind composites are presented for all participating GCMs at both horizontal grid spacings. While all TCs undergo a similar evolution process, some reach significantly higher intensities than others, ultimately impacting their horizontal and vertical structures. TCs simulated at 25 km grid spacings retain these differences but reach higher intensities and are more compact than their 50 km counterparts. These results indicate that dynamical core choice is an essential factor in GCM<span id="page2494"/> development, and future work should be conducted to explore how specific differences within the dynamical core affect TC behavior in GCMs.</p>https://gmd.copernicus.org/articles/17/2493/2024/gmd-17-2493-2024.pdf
spellingShingle J. L. Willson
K. A. Reed
C. Jablonowski
J. Kent
J. Kent
P. H. Lauritzen
R. Nair
M. A. Taylor
P. A. Ullrich
C. M. Zarzycki
D. M. Hall
D. M. Hall
D. Dazlich
R. Heikes
C. Konor
D. Randall
T. Dubos
Y. Meurdesoif
X. Chen
X. Chen
L. Harris
C. Kühnlein
V. Lee
A. Qaddouri
C. Girard
M. Giorgetta
D. Reinert
H. Miura
T. Ohno
R. Yoshida
DCMIP2016: the tropical cyclone test case
Geoscientific Model Development
title DCMIP2016: the tropical cyclone test case
title_full DCMIP2016: the tropical cyclone test case
title_fullStr DCMIP2016: the tropical cyclone test case
title_full_unstemmed DCMIP2016: the tropical cyclone test case
title_short DCMIP2016: the tropical cyclone test case
title_sort dcmip2016 the tropical cyclone test case
url https://gmd.copernicus.org/articles/17/2493/2024/gmd-17-2493-2024.pdf
work_keys_str_mv AT jlwillson dcmip2016thetropicalcyclonetestcase
AT kareed dcmip2016thetropicalcyclonetestcase
AT cjablonowski dcmip2016thetropicalcyclonetestcase
AT jkent dcmip2016thetropicalcyclonetestcase
AT jkent dcmip2016thetropicalcyclonetestcase
AT phlauritzen dcmip2016thetropicalcyclonetestcase
AT rnair dcmip2016thetropicalcyclonetestcase
AT mataylor dcmip2016thetropicalcyclonetestcase
AT paullrich dcmip2016thetropicalcyclonetestcase
AT cmzarzycki dcmip2016thetropicalcyclonetestcase
AT dmhall dcmip2016thetropicalcyclonetestcase
AT dmhall dcmip2016thetropicalcyclonetestcase
AT ddazlich dcmip2016thetropicalcyclonetestcase
AT rheikes dcmip2016thetropicalcyclonetestcase
AT ckonor dcmip2016thetropicalcyclonetestcase
AT drandall dcmip2016thetropicalcyclonetestcase
AT tdubos dcmip2016thetropicalcyclonetestcase
AT ymeurdesoif dcmip2016thetropicalcyclonetestcase
AT xchen dcmip2016thetropicalcyclonetestcase
AT xchen dcmip2016thetropicalcyclonetestcase
AT lharris dcmip2016thetropicalcyclonetestcase
AT ckuhnlein dcmip2016thetropicalcyclonetestcase
AT vlee dcmip2016thetropicalcyclonetestcase
AT aqaddouri dcmip2016thetropicalcyclonetestcase
AT cgirard dcmip2016thetropicalcyclonetestcase
AT mgiorgetta dcmip2016thetropicalcyclonetestcase
AT dreinert dcmip2016thetropicalcyclonetestcase
AT hmiura dcmip2016thetropicalcyclonetestcase
AT tohno dcmip2016thetropicalcyclonetestcase
AT ryoshida dcmip2016thetropicalcyclonetestcase