Summary: | This article addresses the issue of energy waste resulting from frequent braking of underground mine cars and proposes an optimization design to address this. The proposed solution involves the installation of a regenerative braking device within the mine cars to capture and reuse the energy wasted during braking. This implementation improves the endurance capabilities of the underground mine cars. The article begins by analyzing the working characteristics of underground mine cars and proposing a design optimization method based on regenerative braking energy. Subsequently, a regenerative braking device specifically designed for underground mine cars is introduced. Finally, through physical modeling, a comparison is made between the energy consumption of the underground mine cars before and after the installation of the energy recovery system, allowing for an estimation of the actual benefits of energy recovery. The results demonstrate that the regenerative braking system successfully recovers approximately 60% of the braking energy during operation, resulting in an improvement of around 20% in the endurance capabilities of the underground mine cars. This significant enhancement contributes to the improved energy utilization efficiency of coal mine electric cars, reducing system energy consumption and lowering CO<sub>2</sub> emissions.
|