Study on Macro-Meso Deformation Law and Acoustic Emission Characteristics of Granular Gangue under Different Loading Rates

Bulk gangue is a common backfill material in solid backfill mining. After backfilling into the goaf, bulk gangue serves as the main body to bear the load of overlying strata, and its deformation resistance is the key factor affecting the backfill quality. In this study, the laterally confined compre...

Full description

Bibliographic Details
Main Authors: Tao Qin, Xin Guo, Yanli Huang, Zhixiong Wu, Wenyue Qi, Heng Wang
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/12/11/1422
_version_ 1797467084795412480
author Tao Qin
Xin Guo
Yanli Huang
Zhixiong Wu
Wenyue Qi
Heng Wang
author_facet Tao Qin
Xin Guo
Yanli Huang
Zhixiong Wu
Wenyue Qi
Heng Wang
author_sort Tao Qin
collection DOAJ
description Bulk gangue is a common backfill material in solid backfill mining. After backfilling into the goaf, bulk gangue serves as the main body to bear the load of overlying strata, and its deformation resistance is the key factor affecting the backfill quality. In this study, the laterally confined compression test of broken gangue was designed, the compaction deformation characteristics of gangue specimens under different loading rates were studied, the acoustic emission (AE) energy characteristics of gangue specimens under compression were analyzed, and the relationship model between macroscopic deformation of broken gangue under compression and AE energy was established. The particle flow numerical software PFC2D was used to stimulate the particle breakage in the gangue compaction process, and the coal gangue particle model was established through particle cluster units. The particle force chain distribution and fracture evolution characteristics of gangue specimens in the compression process were studied, and the macroscopic deformation mechanism was revealed from the mesoscopic perspective. The results showed that: the porosity variation of the gangue specimen increases with the increase of loading rate; the porosity increases with the decrease in the strain, the porosity decreases with the increase in the stress, and the relationship between porosity and stress is monotonously decreasing. With the increase of loading rate, the AE signals produced by particle breakage become stronger, while the influence of the loading rate on the maximum strain, fragmentation and AE signal of the specimen is gradually weakened. Under different loading rates, the “instability-optimization” of the skeleton force chain structure of the gangue model and the crushing-recombination of cracks are the main reasons for the compaction deformation of gangue specimens at the early stage of loading. The research results are of great significance to reveal the deformation mechanism of coal gangue as backfill materials under compression.
first_indexed 2024-03-09T18:48:37Z
format Article
id doaj.art-15229e6e72524a618007120b58cf54c9
institution Directory Open Access Journal
issn 2075-163X
language English
last_indexed 2024-03-09T18:48:37Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Minerals
spelling doaj.art-15229e6e72524a618007120b58cf54c92023-11-24T05:59:10ZengMDPI AGMinerals2075-163X2022-11-011211142210.3390/min12111422Study on Macro-Meso Deformation Law and Acoustic Emission Characteristics of Granular Gangue under Different Loading RatesTao Qin0Xin Guo1Yanli Huang2Zhixiong Wu3Wenyue Qi4Heng Wang5State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, ChinaInner Mongolia Power Coal Industry Co., Ltd., Ordos 017100, ChinaState Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, ChinaInner Mongolia Power Coal Industry Co., Ltd., Ordos 017100, ChinaState Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, ChinaInner Mongolia Power Coal Industry Co., Ltd., Ordos 017100, ChinaBulk gangue is a common backfill material in solid backfill mining. After backfilling into the goaf, bulk gangue serves as the main body to bear the load of overlying strata, and its deformation resistance is the key factor affecting the backfill quality. In this study, the laterally confined compression test of broken gangue was designed, the compaction deformation characteristics of gangue specimens under different loading rates were studied, the acoustic emission (AE) energy characteristics of gangue specimens under compression were analyzed, and the relationship model between macroscopic deformation of broken gangue under compression and AE energy was established. The particle flow numerical software PFC2D was used to stimulate the particle breakage in the gangue compaction process, and the coal gangue particle model was established through particle cluster units. The particle force chain distribution and fracture evolution characteristics of gangue specimens in the compression process were studied, and the macroscopic deformation mechanism was revealed from the mesoscopic perspective. The results showed that: the porosity variation of the gangue specimen increases with the increase of loading rate; the porosity increases with the decrease in the strain, the porosity decreases with the increase in the stress, and the relationship between porosity and stress is monotonously decreasing. With the increase of loading rate, the AE signals produced by particle breakage become stronger, while the influence of the loading rate on the maximum strain, fragmentation and AE signal of the specimen is gradually weakened. Under different loading rates, the “instability-optimization” of the skeleton force chain structure of the gangue model and the crushing-recombination of cracks are the main reasons for the compaction deformation of gangue specimens at the early stage of loading. The research results are of great significance to reveal the deformation mechanism of coal gangue as backfill materials under compression.https://www.mdpi.com/2075-163X/12/11/1422backfill miningcrushed gangueloading ratecompression deformationacoustic emission (AE)particle flow
spellingShingle Tao Qin
Xin Guo
Yanli Huang
Zhixiong Wu
Wenyue Qi
Heng Wang
Study on Macro-Meso Deformation Law and Acoustic Emission Characteristics of Granular Gangue under Different Loading Rates
Minerals
backfill mining
crushed gangue
loading rate
compression deformation
acoustic emission (AE)
particle flow
title Study on Macro-Meso Deformation Law and Acoustic Emission Characteristics of Granular Gangue under Different Loading Rates
title_full Study on Macro-Meso Deformation Law and Acoustic Emission Characteristics of Granular Gangue under Different Loading Rates
title_fullStr Study on Macro-Meso Deformation Law and Acoustic Emission Characteristics of Granular Gangue under Different Loading Rates
title_full_unstemmed Study on Macro-Meso Deformation Law and Acoustic Emission Characteristics of Granular Gangue under Different Loading Rates
title_short Study on Macro-Meso Deformation Law and Acoustic Emission Characteristics of Granular Gangue under Different Loading Rates
title_sort study on macro meso deformation law and acoustic emission characteristics of granular gangue under different loading rates
topic backfill mining
crushed gangue
loading rate
compression deformation
acoustic emission (AE)
particle flow
url https://www.mdpi.com/2075-163X/12/11/1422
work_keys_str_mv AT taoqin studyonmacromesodeformationlawandacousticemissioncharacteristicsofgranulargangueunderdifferentloadingrates
AT xinguo studyonmacromesodeformationlawandacousticemissioncharacteristicsofgranulargangueunderdifferentloadingrates
AT yanlihuang studyonmacromesodeformationlawandacousticemissioncharacteristicsofgranulargangueunderdifferentloadingrates
AT zhixiongwu studyonmacromesodeformationlawandacousticemissioncharacteristicsofgranulargangueunderdifferentloadingrates
AT wenyueqi studyonmacromesodeformationlawandacousticemissioncharacteristicsofgranulargangueunderdifferentloadingrates
AT hengwang studyonmacromesodeformationlawandacousticemissioncharacteristicsofgranulargangueunderdifferentloadingrates