Summary: | ABSTRACT: Staphylococcus hominis, a member of the non-aureus staphylococci (NAS) group, is part of the human and animal microbiota. Although it has been isolated from multiple bovine-associated habitats, its relevance as a cause of bovine mastitis is currently not well described. To successfully colonize and proliferate in the bovine mammary gland, a bacterial species must be able to acquire iron from host iron-binding proteins. The aims of this study were (1) to assess the genetic diversity of S. hominis isolated from bovine quarter milk, rectal feces, and teat apices, and (2) to investigate the capacity of bovine S. hominis isolates belonging to these different habitats to utilize ferritin and lactoferrin as iron sources. To expand on an available collection of bovine S. hominis isolates (2 from quarter milk, 8 from rectal feces, and 19 from teat apices) from one commercial dairy herd, a subsequent single cross-sectional quarter milk sampling (n = 360) was performed on all lactating cows (n = 90) of the same herd. In total, 514 NAS isolates were recovered and identified by MALDI-TOF mass spectrometry; the 6 most prevalent NAS species were S. cohnii (33.9%), S. sciuri (16.7%), S. haemolyticus (16.3%), S. xylosus (9.6%), S. equorum (9.4%), and S. hominis (3.5%). A random amplified polymorphic DNA (RAPD) analysis was performed on 46 S. hominis isolates (19 from quarter milk, 8 from rectal feces, and 19 from teat apices). Eighteen distinct RAPD fingerprint groups were distinguished although we were unable to detect the presence of the same RAPD type in all 3 habitats. One S. hominis isolate of a distinct RAPD type unique to a specific habitat (8 from quarter milk, 3 from rectal feces, and 4 from teat apices) along with the quality control strain Staphylococcus aureus ATCC 25923 and 2 well-studied Staphylococcus chromogenes isolates (“IM” and “TA”) were included in the phenotypical iron test. All isolates were grown in 4 types of media: iron-rich tryptic soy broth, iron-rich tryptic soy broth deferrated by 2,2'-bipyridyl, and deferrated tryptic soy broth supplemented with human recombinant lactoferrin or equine spleen–derived ferritin. The growth of the different strains was modified by the medium in which they were grown. Staphylococcus chromogenes TA showed significantly lower growth under iron-deprived conditions, and adding an iron supplement (lactoferrin or ferritin) resulted in no improvement in growth; in contrast, growth of S. chromogenes IM was significantly recovered with iron supplementation. Staphylococcus hominis strains from all 3 habitats were able to significantly utilize ferritin but not lactoferrin as an iron source to reverse the growth inhibition, in varying degrees, caused by the chelating agent 2,2'-bipyridyl.
|