Ultra-high photo responsivity and self-powered photodetector in broad spectral range based on non-layered MnSe/WSe2 heterojunction

Due to its good p-type semiconductor characteristics, MnSe has a great application prospect in high-performance electronic and optoelectronic devices. However, heterojunctions of MnSe still need to be deeply studied to improve its electrical and photoelectric properties. Here, it is reported that th...

Full description

Bibliographic Details
Main Authors: Shuting Zhao, Xiurong Ma, Xuanhao Cao, Zehong Lei, Yibin Yang, Lili Tao, Zhaoqiang Zheng, Xing Feng, Yu Zhao
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-04-01
Series:Frontiers in Materials
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmats.2023.1162166/full
Description
Summary:Due to its good p-type semiconductor characteristics, MnSe has a great application prospect in high-performance electronic and optoelectronic devices. However, heterojunctions of MnSe still need to be deeply studied to improve its electrical and photoelectric properties. Here, it is reported that the two-dimensional (2D) MnSe/WSe2 heterojunction is structured by the non-layered MnSe nanosheets synthesized by chemical vapor deposition (CVD) method and the mechanically exfoliated layered WSe2. The heterojunction device exhibits a rectification effect and a current on/off ratio of 6,557. Meanwhile, it has a broad spectral range response from ultraviolet (UV) to short-wave infrared radiation (SWIR) (300–2,200 nm), and achieves an ultra-high responsivity of 156 A/W, along with an excellent detectivity of 2.21 × 1012 jones, and an outstanding external quantum efficiency (EQE) of 36,400%. Moreover, the type II band alignment and the built-in potential in the MnSe/WSe2 heterojunction can facilitate the separation of the photoexcited electron-hole pairs, which enables the significant photovoltaic characteristics and self-powered photoswitching response. This work reveals the novel performance of the 2D MnSe/WSe2 heterojunction and a great potential in photoswitching, photodetector, and photovoltaic applications.
ISSN:2296-8016