Summary: | Zearalenone (ZEA) is the most common fungal toxin contaminating livestock and poultry feeding, especially in pigs, causing severe toxic effects and economic losses. However, the mechanism of ZEA damage to the intestine is unknown. We constructed an in vitro model of ZEA toxicity in a porcine small intestinal epithelial cell (IPEC-J2) line. ZEA causes severe oxidative stress in porcine small intestine cells, such as the production of ROS and a significant decrease in the levels of antioxidant enzymes GSH, CAT, SOD, and T-AOC. ZEA also caused apoptosis in porcine small intestine cells, resulting in a significant reduction in protein and/or mRNA expression of apoptosis-related pathway factors such as P53, caspase 3, caspase 9, Bax, and Cyt-c, which in turn caused a significant decrease in protein and/or mRNA expression of inflammatory-related factors such as IL-1β, IL-2, Cox-2, NF-κD, NLRP3, IL-6, and IL -18, which in turn caused a significant increase in protein and/or mRNA expression levels. The final results suggest that ZEA can cause a severe toxic response in porcine small intestine cells, with oxidative stress, apoptotic cell death and inflammatory damage.
|