Long-Chain Branched Bio-Based Poly(butylene dodecanedioate) Copolyester Using Pentaerythritol as Branching Agent: Synthesis, Thermo-Mechanical, and Rheological Properties

The introduction of long-chain branched structures into biodegradable polyesters can effectively improve the melt strength and blow-molding properties of polyesters. In this study, pentaerythritol (PER) was used as a branching agent to synthesize branched poly(butylene dodecanedioate) (PBD), and the...

Full description

Bibliographic Details
Main Authors: Ruixue Niu, Zhening Zheng, Xuedong Lv, Benqiao He, Sheng Chen, Jiaying Zhang, Yanhong Ji, Yi Liu, Liuchun Zheng
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/15/3168
Description
Summary:The introduction of long-chain branched structures into biodegradable polyesters can effectively improve the melt strength and blow-molding properties of polyesters. In this study, pentaerythritol (PER) was used as a branching agent to synthesize branched poly(butylene dodecanedioate) (PBD), and the resulting polymers were characterized by Nuclear Magnetic Resonance Proton Spectra (<sup>1</sup>H NMR) and Fourier Transform Infrared spectroscopy (FT-IR). It was found that the introduction of a small amount of PER (0.25–0.5 mol%) can generate branching and even crosslinking structures. Both impact strength and tensile modulus can be greatly improved by the introduction of a branching agent. With the introduction of 1 mol% PER content in PBD, the notched impact strength of PBD has been increased by 85%, and the tensile modulus has been increased by 206%. Wide-angle X-ray diffraction and differential scanning calorimetry results showed that PER-branched PBDs exhibited improved crystallization ability compared with linear PBDs. Dynamic viscoelastics revealed that shear-thickening behaviors can be found for all branched PBD under low shear rates.
ISSN:2073-4360