High- and mid-latitude quasi-2-day waves observed simultaneouslyby four meteor radars during summer 2000
Results from the analysis of MLT wind measurements at Dixon (73.5°N, 80°E), Esrange (68°N, 21°E), Castle Eaton (UK) (53°N, 2°W), and Obninsk (55°N, 37°E) during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs) are shown to appear simultan...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2004-03-01
|
Series: | Annales Geophysicae |
Online Access: | https://www.ann-geophys.net/22/773/2004/angeo-22-773-2004.pdf |
Summary: | Results from the analysis of MLT wind measurements at Dixon (73.5°N, 80°E), Esrange
(68°N, 21°E), Castle Eaton (UK) (53°N, 2°W), and Obninsk (55°N, 37°E) during summer 2000
are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves
(QTDWs) are shown to appear simultaneously at high- and mid-latitudes and reveal
themselves as several bursts of wave activity. At first this activity is preceded by a 51–53h
wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval
for about 10 days near day 205), we observe a regular sequence of three bursts, the
strongest of them corresponding to a QTDW with a period of 47–48h and S=4 at mid-altitudes.
</p><p style="line-height: 20px;">
We hypothesize that these three bursts may be the result of constructive and destructive
interference between several spectral components: a 47–48h component with S=4; a 60-h
component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher)
zonal wave-number components increase (decrease) with increasing latitude. The S-transform
or wavelet analysis indicates when these spectral components create the wave
activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to
about 2 for mid- and high-latitudes. The main spectral component at Dixon and Esrange
latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the
observed spectral components hint at the possible occurrence of the nonlinear interaction
between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear
numerical model, we attempt to simulate some of the observed features and to explain them
as a consequence of the nonlinear interaction between the primary 47–48h and the
9–10day waves, and the resulting linear superposition of primary and secondary waves. In addition to
the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6–7day wave
with S=1, possibly arising from nonlinear decoupling of the 60-h wave with S=3. The starting
mechanism for this decoupling is the Rossby wave instability (e.g. Baines, 1976). This result
is consistent with the day-to-day wind variability during the observed QTDW events. An
interesting feature of the final stage of the observed QTDW activity in summer 2000 is the
occurrence of strong 4–5 day waves with S=3.<br><br>
<b>Key words.</b> Meteorology and atmospheric dynamics (middle
atmosphere dynamics; waves and tides; general or miscellaneous) |
---|---|
ISSN: | 0992-7689 1432-0576 |