Summary: | Ground-based forest inventories are reliable methods for forest carbon monitoring, reporting, and verification schemes and the cornerstone of forest ecology research. Recent work using LiDAR-equipped mobile phones to automate parts of the forest inventory process assumes that tree trunks are well-spaced and visually unoccluded, or else require manual intervention or offline processing to identify and measure tree trunks. In this paper, we designed an algorithm that exploits a low-cost smartphone LiDAR sensor to estimate the trunk diameter automatically from a single image in complex and realistic field conditions. We implemented our design and built it into an app on a Huawei P30 Pro smartphone, demonstrating that the algorithm has low enough computational costs to run on this commodity platform in near real-time. We evaluated our app in 3 different forests across 3 seasons and found that in a corpus of 97 sample tree images, our app estimated the trunk diameter with a RMSE of 3.7 cm (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.97; 8.0% mean absolute error) compared to manual DBH measurement. It achieved a 100% tree detection rate while reducing the surveyor time by up to a factor of 4.6. Our work contributes to the search for a low-cost, low-expertise alternative to terrestrial laser scanning that is nonetheless robust and efficient enough to compete with manual methods. We highlight the challenges that low-end mobile depth scanners face in occluded conditions and offer a lightweight, fully automatic approach for segmenting depth images and estimating the trunk diameter despite these challenges. Our approach lowers the barriers to <i>in situ</i> forest measurements outside of an urban or plantation context, maintaining a tree detection and accuracy rate comparable to previous mobile phone methods even in complex forest conditions.
|