Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy

Cerenkov luminescence imaging and Cerenkov photodynamic therapy have been developed in recent years to exploit the Cerenkov radiation (CR) generated by radioisotopes, frequently used in Nuclear Medicine, to diagnose and fight cancer lesions. For in vivo detection, the endpoint energy of the radioiso...

Full description

Bibliographic Details
Main Authors: Federico Boschi, Antonello Enrico Spinelli
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/9/1771
Description
Summary:Cerenkov luminescence imaging and Cerenkov photodynamic therapy have been developed in recent years to exploit the Cerenkov radiation (CR) generated by radioisotopes, frequently used in Nuclear Medicine, to diagnose and fight cancer lesions. For in vivo detection, the endpoint energy of the radioisotope and, thus, the total number of the emitted Cerenkov photons, represents a very important variable and explains why, for example, <sup>68</sup>Ga is better than <sup>18</sup>F. However, it was also found that the scintillation process is an important mechanism for light production. Nanotechnology represents the most important field, providing nanosctructures which are able to shift the UV-blue emission into a more suitable wavelength, with reduced absorption, which is useful especially for in vivo imaging and therapy applications. Nanoparticles can be made, loaded or linked to fluorescent dyes to modify the optical properties of CR radiation. They also represent a useful platform for therapeutic agents, such as photosensitizer drugs for the production of reactive oxygen species (ROS). Generally, NPs can be spaced by CR sources; however, for in vivo imaging applications, NPs bound to or incorporating radioisotopes are the most interesting nanocomplexes thanks to their high degree of mutual colocalization and the reduced problem of false uptake detection. Moreover, the distance between the NPs and CR source is crucial for energy conversion. Here, we review the principal NPs proposed in the literature, discussing their properties and the main results obtained by the proponent experimental groups.
ISSN:2079-4991