Summary: | Dynamic energy tariffs facilitate engaging domestic consumers on demand management, contributing to grid’s stability, but requires of informed decision enabling tools. This paper presents a domestic heating costs calculation method for different heating technologies (gas boiler, heat-pumps) and a range of energy tariffs. Based on physical modeling, effect of outdoor temperature in the COP of heat-pumps is assessed. The methodology is applied to the 2018/19 heating season in Madrid (Spain), calculating the heating costs under four diverse energy tariffs (static gas tariff, static electricity tariff, real-time-price electricity tariff, dynamic time-of-use electricity tariff) for a typical home demand. The hourly results for two representative days are detailed, along with the aggregated results for the whole season. Along the season, the continuous changes in energy wholesale market prices and weather conditions make one heating technology and/or tariff more convenient each time. For the whole season, the dynamic time-of-use tariff considered would imply heating costs up to 40% lower than the static gas tariff. The results are strongly conditioned by climate conditions and national energy market evolutions. Day-ahead information on the actual heating costs might lead to domestic end-users to adapt their behavior and consumption patterns for more cost-effective use of the energy.
|