Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme

Laser-driven ion acceleration has been an active research area in the past two decades with the prospects of designing novel and compact ion accelerators. Many potential applications in science and industry require high-quality, energetic ion beams with low divergence and narrow energy spread. Inten...

Full description

Bibliographic Details
Main Authors: J Li, P Forestier-Colleoni, M Bailly-Grandvaux, C McGuffey, A V Arefiev, S S Bulanov, J Peebles, C Krauland, A E Hussein, T Batson, J C Fernandez, S Palaniyappan, R P Johnson, G M Petrov, F N Beg
Format: Article
Language:English
Published: IOP Publishing 2019-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ab4454
_version_ 1797749964213846016
author J Li
P Forestier-Colleoni
M Bailly-Grandvaux
C McGuffey
A V Arefiev
S S Bulanov
J Peebles
C Krauland
A E Hussein
T Batson
J C Fernandez
S Palaniyappan
R P Johnson
G M Petrov
F N Beg
author_facet J Li
P Forestier-Colleoni
M Bailly-Grandvaux
C McGuffey
A V Arefiev
S S Bulanov
J Peebles
C Krauland
A E Hussein
T Batson
J C Fernandez
S Palaniyappan
R P Johnson
G M Petrov
F N Beg
author_sort J Li
collection DOAJ
description Laser-driven ion acceleration has been an active research area in the past two decades with the prospects of designing novel and compact ion accelerators. Many potential applications in science and industry require high-quality, energetic ion beams with low divergence and narrow energy spread. Intense laser ion acceleration research strives to meet these challenges and may provide high charge state beams, with some successes for carbon and lighter ions. Here we demonstrate the generation of well collimated, quasi-monoenergetic titanium ions with energies ∼145 and 180 MeV in experiments using the high-contrast (<10 ^−9 ) and high-intensity ( $6\times {10}^{20}\,{\rm{W}}\,{\mathrm{cm}}^{-2}$ ) Trident laser and ultra-thin (∼100 nm) titanium foil targets. Numerical simulations show that the foils become transparent to the laser pulses, undergoing relativistically induced transparency (RIT), resulting in a two-stage acceleration process which lasts until ∼2 ps after the onset of RIT. Such long acceleration time in the self-generated electric fields in the expanding plasma enables the formation of the quasi-monoenergetic peaks. This work contributes to the better understanding of the acceleration of heavier ions in the RIT regime, towards the development of next generation laser-based ion accelerators for various applications.
first_indexed 2024-03-12T16:26:08Z
format Article
id doaj.art-1588667bed9b4eefb629a988eced59d2
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:26:08Z
publishDate 2019-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-1588667bed9b4eefb629a988eced59d22023-08-08T15:41:08ZengIOP PublishingNew Journal of Physics1367-26302019-01-01211010300510.1088/1367-2630/ab4454Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration schemeJ Li0https://orcid.org/0000-0001-9247-0760P Forestier-Colleoni1M Bailly-Grandvaux2https://orcid.org/0000-0001-7529-4013C McGuffey3A V Arefiev4https://orcid.org/0000-0002-0597-0976S S Bulanov5J Peebles6C Krauland7A E Hussein8https://orcid.org/0000-0001-9676-4862T Batson9J C Fernandez10S Palaniyappan11R P Johnson12G M Petrov13F N Beg14https://orcid.org/0000-0003-0391-8944Center for Energy Research, Univ. California San Diego , La Jolla, CA 92093-0417, United States of AmericaCenter for Energy Research, Univ. California San Diego , La Jolla, CA 92093-0417, United States of AmericaCenter for Energy Research, Univ. California San Diego , La Jolla, CA 92093-0417, United States of AmericaCenter for Energy Research, Univ. California San Diego , La Jolla, CA 92093-0417, United States of AmericaCenter for Energy Research, Univ. California San Diego , La Jolla, CA 92093-0417, United States of AmericaLawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of AmericaCenter for Energy Research, Univ. California San Diego , La Jolla, CA 92093-0417, United States of AmericaCenter for Energy Research, Univ. California San Diego , La Jolla, CA 92093-0417, United States of AmericaCenter for Ultrafast Optical Science, Univ. of Michigan , Ann Arbor, MI 48109, United States of AmericaCenter for Ultrafast Optical Science, Univ. of Michigan , Ann Arbor, MI 48109, United States of AmericaLos Alamos National Laboratory, Los Alamos,NM 87545, United States of AmericaLos Alamos National Laboratory, Los Alamos,NM 87545, United States of AmericaLos Alamos National Laboratory, Los Alamos,NM 87545, United States of AmericaNaval Research Laboratory, Plasma Physics Division, Washington, DC 20375, United States of AmericaCenter for Energy Research, Univ. California San Diego , La Jolla, CA 92093-0417, United States of AmericaLaser-driven ion acceleration has been an active research area in the past two decades with the prospects of designing novel and compact ion accelerators. Many potential applications in science and industry require high-quality, energetic ion beams with low divergence and narrow energy spread. Intense laser ion acceleration research strives to meet these challenges and may provide high charge state beams, with some successes for carbon and lighter ions. Here we demonstrate the generation of well collimated, quasi-monoenergetic titanium ions with energies ∼145 and 180 MeV in experiments using the high-contrast (<10 ^−9 ) and high-intensity ( $6\times {10}^{20}\,{\rm{W}}\,{\mathrm{cm}}^{-2}$ ) Trident laser and ultra-thin (∼100 nm) titanium foil targets. Numerical simulations show that the foils become transparent to the laser pulses, undergoing relativistically induced transparency (RIT), resulting in a two-stage acceleration process which lasts until ∼2 ps after the onset of RIT. Such long acceleration time in the self-generated electric fields in the expanding plasma enables the formation of the quasi-monoenergetic peaks. This work contributes to the better understanding of the acceleration of heavier ions in the RIT regime, towards the development of next generation laser-based ion accelerators for various applications.https://doi.org/10.1088/1367-2630/ab4454laser–plasma interactionsparticle accelerationion beam generation
spellingShingle J Li
P Forestier-Colleoni
M Bailly-Grandvaux
C McGuffey
A V Arefiev
S S Bulanov
J Peebles
C Krauland
A E Hussein
T Batson
J C Fernandez
S Palaniyappan
R P Johnson
G M Petrov
F N Beg
Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme
New Journal of Physics
laser–plasma interactions
particle acceleration
ion beam generation
title Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme
title_full Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme
title_fullStr Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme
title_full_unstemmed Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme
title_short Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme
title_sort laser driven acceleration of quasi monoenergetic near collimated titanium ions via a transparency enhanced acceleration scheme
topic laser–plasma interactions
particle acceleration
ion beam generation
url https://doi.org/10.1088/1367-2630/ab4454
work_keys_str_mv AT jli laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT pforestiercolleoni laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT mbaillygrandvaux laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT cmcguffey laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT avarefiev laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT ssbulanov laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT jpeebles laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT ckrauland laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT aehussein laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT tbatson laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT jcfernandez laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT spalaniyappan laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT rpjohnson laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT gmpetrov laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme
AT fnbeg laserdrivenaccelerationofquasimonoenergeticnearcollimatedtitaniumionsviaatransparencyenhancedaccelerationscheme