Expression of Human L-Dopa Decarboxylase (DDC) under Conditions of Oxidative Stress

Oxidative stress is known to influence mRNA levels, translation, and proteolysis. The importance of oxidative stress has been demonstrated in several human diseases, including neurodegenerative disorders. L-Dopa decarboxylase (DDC) is the enzyme that converts L-Dopa to dopamine (DA). In spite of a l...

Full description

Bibliographic Details
Main Authors: Nikolaos S. Lotsios, Nikolaos Arvanitis, Alexandros G. Charonitakis, George Mpekoulis, Efseveia Frakolaki, Niki Vassilaki, Diamantis C. Sideris, Dido Vassilacopoulou
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Current Issues in Molecular Biology
Subjects:
Online Access:https://www.mdpi.com/1467-3045/45/12/635
Description
Summary:Oxidative stress is known to influence mRNA levels, translation, and proteolysis. The importance of oxidative stress has been demonstrated in several human diseases, including neurodegenerative disorders. L-Dopa decarboxylase (DDC) is the enzyme that converts L-Dopa to dopamine (DA). In spite of a large number of studies, little is known about the biological significance of the enzyme under physiological and pathological conditions. Here, we investigated the relationship between DDC expression and oxidative stress in human neural and non-neural cells. Oxidative stress was induced by treatment with H<sub>2</sub>O<sub>2</sub>. Our data indicated that mRNA and protein expression of DDC was enhanced or remained stable under conditions of ROS induction, despite degradation of total RNA and increased cytotoxicity and apoptosis. Moreover, DDC silencing caused an increase in the H<sub>2</sub>O<sub>2</sub>-induced cytotoxicity. The current study suggests that DDC is involved in the mechanisms of oxidative stress.
ISSN:1467-3037
1467-3045