Study of Pressure Drop in the 2D Spouted Bed with Conical Base of Binary Particle Mixtures: Effects of Particle Size and Density
In this study, the pressure drop for the binary mixtures of particles differing in size and density in a pseudo-2D spouted bed was experimentally studied. A binary mixture of solid particles including sand, Gypsum, and polyurethane was used in the experimental setup. Effects of static bed height, co...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
2018-04-01
|
Series: | Iranian Journal of Chemistry & Chemical Engineering |
Subjects: | |
Online Access: | http://www.ijcce.ac.ir/article_27252_f8ee63e4a15c7c3f5b34f2c415e734a5.pdf |
Summary: | In this study, the pressure drop for the binary mixtures of particles differing in size and density in a pseudo-2D spouted bed was experimentally studied. A binary mixture of solid particles including sand, Gypsum, and polyurethane was used in the experimental setup. Effects of static bed height, cone angle, particles diameter, and a particles weight fraction on the bed pressure drop were evaluated. The relationship between the peak pressure drops of the binary mixtures to the minimum spouting velocity was discussed. The trend of variation of pressure drop versus superficial gas velocities for binary particle mixtures in the spouted beds was found to be similar with that for the single sized particle system. The particles that sink to the bed bottom are called jetsam, whereas those gathered at the upper section of the bed are called flotsam. At the same air velocity for jetsam and flotsam rich systems, the maximum pressure drop in the jetsam rich system was larger than the flotsam one. The measured values of minimum spouting velocity were compared with some empirical correlations for single sized particles in spouted beds. |
---|---|
ISSN: | 1021-9986 1021-9986 |