An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation

Abstract In this paper, our purpose is to present a wavelet Galerkin method for solving the time-fractional KdV-Burgers-Kuramoto (KBK) equation, which describes nonlinear physical phenomena and involves instability, dissipation, and dispersion parameters. The presented computational method in this p...

Full description

Bibliographic Details
Main Authors: Aydin Secer, Neslihan Ozdemir
Format: Article
Language:English
Published: SpringerOpen 2019-09-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-019-2297-8
Description
Summary:Abstract In this paper, our purpose is to present a wavelet Galerkin method for solving the time-fractional KdV-Burgers-Kuramoto (KBK) equation, which describes nonlinear physical phenomena and involves instability, dissipation, and dispersion parameters. The presented computational method in this paper is based on Gegenbauer wavelets. Gegenbauer wavelets have useful properties. Gegenbauer wavelets and the operational matrix of integration, together with the Galerkin method, were used to transform the time-fractional KBK equation into the corresponding nonlinear system of algebraic equations, which can be solved numerically with Newton’s method. Our aim is to show that the Gegenbauer wavelets-based method is efficient and powerful tool for solving the KBK equation with time-fractional derivative. In order to compare the obtained numerical results of the wavelet Galerkin method with exact solutions, two test problems were chosen. The obtained results prove the performance and efficiency of the presented method.
ISSN:1687-1847