Climatological Features of Squall Line at the Borneo Coastline during Southwest Monsoon

Borneo Squall Line (BSL) is a disaster risk associated with intense rain and wind gust that affect the activities and residence near the northern coast of Borneo. Using 3-hourly rainfall from Tropical Rainfall Measuring Mission (TRMM) 3B42V7 during southwest monsoon season (May–September) from 1998–...

Full description

Bibliographic Details
Main Authors: Fadila Jasmin Fakaruddin, Najhan Azima Nawai, Mahani Abllah, Fredolin Tangang, Liew Juneng
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/1/116
Description
Summary:Borneo Squall Line (BSL) is a disaster risk associated with intense rain and wind gust that affect the activities and residence near the northern coast of Borneo. Using 3-hourly rainfall from Tropical Rainfall Measuring Mission (TRMM) 3B42V7 during southwest monsoon season (May–September) from 1998–2018, a total of 629 squall days were identified. Their monthly and annual average was 6 and 30 days, respectively, with July representing the month with the highest number of squall line days. BSL is frequently initiated during midnight/predawn and terminated in the morning. Composite analyses of BSL days using the daily winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim revealed that lower tropospheric wind convergence is a crucial controlling factor for BSL formation. The position of the monsoon trough closer to the equatorial South China Sea (SCS), and strong westerly and south-westerly winds played an important role in creating this wind convergence region. Analyses of tropical cyclone (TC) data from the Regional Specialized Meteorological Centre (RSMC), Tokyo showed that nearly 72% of BSL occurred with the presence of TC. Spectral analysis exhibited prominent frequencies mainly in the 3–4- and 6-year time scale, which likely reflected the influence of interannual modulation of El-Niño Southern Oscillation (ENSO). Correlation coefficient between squall days and Sea Surface Temperature (SST) anomalies indicated that BSL increased after La-Niña events. This study is expected to have implications for real-time squall line forecasting in Malaysia and contributes toward a better understanding of BSL.
ISSN:2073-4433