Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF.

Methionine residues are particularly sensitive to oxidation by reactive oxygen or chlorine species (ROS/RCS), leading to the appearance of methionine sulfoxide in proteins. This post-translational oxidation can be reversed by omnipresent protein repair pathways involving methionine sulfoxide reducta...

Full description

Bibliographic Details
Main Authors: Alexandra Vergnes, Camille Henry, Gaia Grassini, Laurent Loiseau, Sara El Hajj, Yann Denis, Anne Galinier, Didier Vertommen, Laurent Aussel, Benjamin Ezraty
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-07-01
Series:PLoS Genetics
Online Access:https://doi.org/10.1371/journal.pgen.1010180
Description
Summary:Methionine residues are particularly sensitive to oxidation by reactive oxygen or chlorine species (ROS/RCS), leading to the appearance of methionine sulfoxide in proteins. This post-translational oxidation can be reversed by omnipresent protein repair pathways involving methionine sulfoxide reductases (Msr). In the periplasm of Escherichia coli, the enzymatic system MsrPQ, whose expression is triggered by the RCS, controls the redox status of methionine residues. Here we report that MsrPQ synthesis is also induced by copper stress via the CusSR two-component system, and that MsrPQ plays a role in copper homeostasis by maintaining the activity of the copper efflux pump, CusCFBA. Genetic and biochemical evidence suggest the metallochaperone CusF is the substrate of MsrPQ and our study reveals that CusF methionines are redox sensitive and can be restored by MsrPQ. Thus, the evolution of a CusSR-dependent synthesis of MsrPQ allows conservation of copper homeostasis under aerobic conditions by maintenance of the reduced state of Met residues in copper-trafficking proteins.
ISSN:1553-7390
1553-7404