Dermal tissue remodeling and non-osmotic sodium storage in kidney patients

Abstract Background Excess dietary sodium is not only excreted by the kidneys, but can also be stored by non-osmotic binding with glycosaminoglycans in dermal connective tissue. Such storage has been associated with dermal inflammation and lymphangiogenesis. We aim to investigate if skin storage of...

Full description

Bibliographic Details
Main Authors: Ryanne S. Hijmans, Marco van Londen, Kwaku A. Sarpong, Stephan J. L. Bakker, Gerjan J. Navis, Twan T. R. Storteboom, Wilhelmina H. A. de Jong, Robert A. Pol, Jacob van den Born
Format: Article
Language:English
Published: BMC 2019-03-01
Series:Journal of Translational Medicine
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12967-019-1815-5
Description
Summary:Abstract Background Excess dietary sodium is not only excreted by the kidneys, but can also be stored by non-osmotic binding with glycosaminoglycans in dermal connective tissue. Such storage has been associated with dermal inflammation and lymphangiogenesis. We aim to investigate if skin storage of sodium is increased in kidney patients and if this storage is associated with clinical parameters of sodium homeostasis and dermal tissue remodeling. Methods Abdominal skin tissue of 12 kidney patients (5 on hemodialysis) and 12 healthy kidney donors was obtained during surgery. Skin biopsies were processed for dermal sodium measurement by atomic absorption spectroscopy, and evaluated for CD68+ macrophages, CD3+ T-cells, collagen I, podoplanin + lymph vessels, and glycosaminoglycans by qRT-PCR and immunohistochemistry. Results Dermal sodium content of kidney patients did not differ from healthy individuals, but was inversely associated with plasma sodium values (p < 0.05). Compared to controls, kidney patients showed dermal tissue remodeling by increased CD68+ macrophages, CD3+ T-cells and Collagen I expression (all p < 0.05). Also, both N- and O-sulfation of heparan sulfate glycosaminoglycans were increased (all p < 0.05), most outspoken in hemodialysis patients. Plasma and urinary sodium associates with dermal lymph vessel number (both p < 0.05), whereas loss of eGFR, proteinuria and high systolic blood pressure associated with dermal macrophage density (all p < 0.05). Conclusion Kidney patients did not show increased skin sodium storage compared to healthy individuals. Results do indicate that kidney failure associates with dermal inflammation, whereas increased sodium excretion and plasma sodium associate with dermal lymph vessel formation and loss of dermal sodium storage capacity. Trial registration The cohort is registered at clinicaltrials.gov as NCT (September 6, 2017). NCT, NCT03272841. Registered 6 September 2017—Retrospectively registered, https://clinicaltrials.gov
ISSN:1479-5876