Sintering of Ce3+-doped yttria nanoparticles prepared by precipitation method

Cerium doped yttrium oxide nanoparticles with various Ce3+ concentrations between 0.001 and 0.010 at% have been synthesised by precipitation method using ammonium hydroxide as a precipitation agent. The synthesised powders are characterised by a mean particle size of ca. 55 nm. Highly dense specimen...

Full description

Bibliographic Details
Main Authors: Nibu Putenpurayil Govindan, Aliasghar Najafzadehkhoee, Ali Talimian, Vaclav Pouchly, Monika Michálková, Peter Švančárek, Róbert Klement, Dušan Galusek
Format: Article
Language:English
Published: Elsevier 2023-03-01
Series:Open Ceramics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666539522000980
Description
Summary:Cerium doped yttrium oxide nanoparticles with various Ce3+ concentrations between 0.001 and 0.010 at% have been synthesised by precipitation method using ammonium hydroxide as a precipitation agent. The synthesised powders are characterised by a mean particle size of ca. 55 nm. Highly dense specimens, with a relative density> 98.8%, were obtained by sintering the green compacts shaped by pressure filtration, at 1550 °C for 3 h in air. The sintering behaviour of Ce3+ doped Y2O3 was studied by constructing Master Sintering Curves (MSC); the results showed that the apparent activation energy of sintering for Ce3+ doped Y2O3 increases with the increase of cerium concentration. The segregation of larger Ce3+ cations in the grain boundaries is likely to be responsible for the increase in the sintering activation energy.
ISSN:2666-5395