Effect of High-Temperature Pavement Paving on Fatigue Durability of Bearing-Supported Steel Decks

Orthotropic steel deck (OSD) is a better choice for urban bridges and the replacement of damaged concrete slabs. Gussasphalt concrete (GAC) is usually adopted as the asphalt surfacing; however, the paving temperature of GAC is high, which will affect the fatigue durability of fatigable welds in OSD....

Full description

Bibliographic Details
Main Authors: Qiudong Wang, Bohai Ji, Zhongqiu Fu, Hao Wang
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/20/7196
Description
Summary:Orthotropic steel deck (OSD) is a better choice for urban bridges and the replacement of damaged concrete slabs. Gussasphalt concrete (GAC) is usually adopted as the asphalt surfacing; however, the paving temperature of GAC is high, which will affect the fatigue durability of fatigable welds in OSD. In this study, such influence of high-temperature pavement paving was comprehensively investigated based on in-situ monitoring and numerical analysis. The temperature of OSD and displacement of bearings were investigated based on the monitored data and numerical results. After that, the deformation and residual temperature stress of OSD during the paving process were analyzed. On this basis, the effect of residual temperature stress on fatigue damage accumulation of OSD was investigated and discussed. Results show that the uplift and expanded deformation of OSD arise during the paving process, leading to the displacement of bearings. Residual displacement of bearings, as well as the residual temperature stress at fatigable details of OSD, is observed. The residual temperature stress has considerable effect on fatigue damage accumulation at rib-deck weld. A fatigue damage amplification factor of 1.1 is recommended for taking into consideration of the adverse effect of high-temperature pavement paving.
ISSN:2076-3417