Indicators of Engine Performance Powered by a Biofuel Blend Produced from Microalgal Biomass: A Step towards the Decarbonization of Transport

According to the EU Directive, the so-called RED II, there is increasing significance for biofuels produced from biomass with low indirect land use change (ILUC) risk. Such an alternative and sustainable feedstock could be microalgae, among others, used for biodiesel production. This is due to the h...

Full description

Bibliographic Details
Main Authors: Patryk Ratomski, Małgorzata Hawrot-Paw, Adam Koniuszy, Wojciech Golimowski, Andrzej Kwaśnica, Damian Marcinkowski
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/14/5376
Description
Summary:According to the EU Directive, the so-called RED II, there is increasing significance for biofuels produced from biomass with low indirect land use change (ILUC) risk. Such an alternative and sustainable feedstock could be microalgae, among others, used for biodiesel production. This is due to the high lipid content of their cells and their potential ability to accumulate significant amounts of carbon dioxide in their biomass, which has a positive effect on the carbon footprint of the product. The aim of this study was to determine the effect of adding algal biodiesel to conventional diesel fuel on selected performance parameters of a diesel engine, taking into account the composition of the emitted exhaust gas. Energy-related engine performance parameters such as power, hourly and specific fuel consumption, engine thermal efficiency, and indicated efficiency were determined. No significant differences were found in the energy parameters of engine operation with the fuels tested. In terms of carbon monoxide and NOx emissions, at the highest engine torque, more favorable parameters were obtained for fuel with biodiesel produced from rapeseed oil (B/RME). Under the same conditions, carbon dioxide emissions for the fuel with the addition of biodiesel from microalgae (B/Algae) were 8.1% lower.
ISSN:1996-1073