Design and Application of Phase-Only Diffractive Optical Element Based on Non-Iterative Method

In this study, we devised a method for the design of continuous phase-only holographic masks that map laser light to arbitrary target illumination patterns, which have a wide range of applications. In this method, the discrete gradient of a holographic mask is obtained by combining geometric optics...

Full description

Bibliographic Details
Main Authors: Kuo Shi, Gongjian Zhang
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/9/11/874
Description
Summary:In this study, we devised a method for the design of continuous phase-only holographic masks that map laser light to arbitrary target illumination patterns, which have a wide range of applications. In this method, the discrete gradient of a holographic mask is obtained by combining geometric optics and the linear assignment problem (LAP) methods, and then the entire problem is transformed into an integral problem with a discrete gradient. Finally, the least squares method is used to solve the gradient integral to complete the construction of a phase holographic mask. Due to its good continuity, this mask design method can also be applied to the production of diffractive optical elements. We discussed the effectiveness of this method by constructing two holographic masks with uniform illumination. At the same time, we successfully constructed an Einstein face holographic mask with non-uniform illumination using the LAP method for the first time. It is believed that this method can be widely used in illumination mode, ion capture and other directions.
ISSN:2304-6732