Glass Substrate Dust Removal Using 233 fs Laser-Generated Shockwave

Eliminating dust is gaining importance as a critical requirement in the display panel manufacturing process. The pixel resolution of display panels is increasing rapidly, which means that even small dust particles on the order of a few micrometers can affect them. Conventional surface cleaning metho...

Full description

Bibliographic Details
Main Authors: Myeongjun Kim, Philgong Choi, Jae Heung Jo, Kyunghan Kim
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/12/11/1382
Description
Summary:Eliminating dust is gaining importance as a critical requirement in the display panel manufacturing process. The pixel resolution of display panels is increasing rapidly, which means that even small dust particles on the order of a few micrometers can affect them. Conventional surface cleaning methods such as ultrasonic cleaning (USC), CO<sub>2</sub> cleaning, and wet cleaning may not be sufficiently efficient, economical, or environment friendly. In this study, a laser shockwave cleaning (LSC) method with a 233 fs pulsed laser was developed, which is different from the laser ablation cleaning method. To minimize thermal damage to the glass substrate, the effect of the number of pulses and the gap distance between the focused laser beam and the glass substrate were studied. The optimum number of pulses and gap distance to prevent damage to the glass substrate was inferred as 500 and 20 μm, respectively. With the optimal pulse number and gap distance, cleaning efficiency was tested at a 95% removal ratio regardless of the density of the particles. The effective cleaning area was measured using the removal ratio map and compared with the theoretical value.
ISSN:2072-666X